cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177834 Opmanis's sequence: a(n) is the smallest integer k such that k or one of its nonzero substrings (regarded as an integer) is divisible by every integer in the range 1 through n.

Original entry on oeis.org

1, 2, 6, 12, 45, 54, 56, 56, 245, 504, 1440, 1440, 5044, 5044, 10456, 10569, 11704, 11704, 11704, 13608, 13608, 13608, 26460, 26460, 198007, 258064, 264600, 264600, 475440, 475440, 1754608, 1754608, 2258064, 2258064, 2646004, 2646004, 2992520
Offset: 1

Views

Author

Martins Opmanis, May 14 2010

Keywords

Comments

Comment from N. J. A. Sloane, May 28 2010: (Start)
The factorizations of the initial terms are:
1, 2, 2*3, 2^2*3, 3^2*5, 2*3^3, 2^3*7, 2^3*7, 5*7^2, 2^3*3^2*7, 2^5*3^2*5, 2^5*3^2*5, 2^2*13*97, 2^2*13*97, 2^3*1307, 3*13*271, 2^3*7*11*19,
2^3*7*11*19, 2^3*7*11*19, 2^3*3^5*7, 2^3*3^5*7, 2^3*3^5*7, 2^2*3^3*5*7^2, 2^2*3^3*5*7^2, 23*8609, 2^4*127^2, 2^3*3^3*5^2*7^2, 2^3*3^3*5^2*7^2, 2^4*3*5*7*283,
2^4*3*5*7*283, 2^4*109663, 2^4*109663, 2^4*3^3*5227, 2^4*3^3*5227, 2^2*139*4759, 2^2*139*4759, 2^3*5*79*947, ...
The name "Opmanis's sequence" is due to N. J. A. Sloane, not the author. (End)

Examples

			a(8)=56 because 56 is divisible by 1,2,4,7,8; 5 is divisible by 5; 6 is divisible by 3 and 6. Therefore the set {1,2,3,4,5,6,7,8} is covered by the divisors. 56 is the smallest number with this property.
		

Crossrefs

Cf. A003418 (a weak upper bound), A169819, A169858, A178544.

Programs

  • Mathematica
    k = 1; lst = {}; mx = 0; f[n_] := Block[{a, d, id = IntegerDigits@ n}, a = Complement[ Union[ FromDigits /@ Flatten[ Table[ Partition[ id, k, 1], {k, Length@ id}], 1]], {0}]; d = Union[ Flatten[ Divisors /@ a]]; Complement[ Range@ 100, d][[1]] - 1]; While[k < 3000000, a = f@k; If[a > mx, Print[{a, k}]; AppendTo[lst, k]; mx = a]; k++ ] (* Zak Seidov & Robert G. Wilson v, May 30 2010 *)
  • Python
    def substrings(n): # returns set of nonzero substrings of n
        s = str(n)
        ss = (s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1))
        return set(int(sij) for sij in ss) - {0}
    def a(n, startk=1):
        k = startk
        while True:
            subsk = substrings(k)
            if all(any(kij%m == 0 for kij in subsk) for m in range(1, n+1)):
                return k
            k += 1
    def afind():
        n, an = 1, 1
        while True:
            n, an = n+1, a(n, startk=an)
            print(an, end=", ")
    afind() # Michael S. Branicky, Jan 22 2022

Extensions

Edited by N. J. A. Sloane, May 28 2010
a(1)-a(37) confirmed by Zak Seidov, May 28 2010

A175516 a(n) = smallest positive even integer k such that k or one of its left substrings is divisible by any integer from {1..n}.

Original entry on oeis.org

2, 2, 6, 12, 60, 60, 252, 504, 504, 504, 7260, 7260, 10296, 11760, 11760, 11760, 56160, 56160, 198016, 198016, 1176480, 1323008, 2992500, 6240366, 13442580, 13442580, 37536408, 37536408, 90725804, 90725804, 319800096, 319800096, 319800096, 800640126, 2201169600, 2201169600, 4656965040, 5250966084, 5250966084
Offset: 1

Views

Author

Zak Seidov, Jun 03 2010

Keywords

Crossrefs

Cf. A169858.

Programs

  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        n = 1
        for k in count(2, 2):
            s = str(k)
            prefixes = [int(s[:i+1]) for i in range(len(s))]
            if all(any(ki%m == 0 for ki in prefixes) for m in range(3, n+1)):
                yield k; n += 1
                while any(ki%n == 0 for ki in prefixes):
                    yield k; n += 1
    print(list(islice(agen(), 20))) # Michael S. Branicky, Jun 09 2023

Extensions

Corrected and extended by Hugo van der Sanden, Jun 01 2010
Showing 1-2 of 2 results.