cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169916 Squares in carryless arithmetic mod 10 with addition and multiplication of digits both defined to be addition mod 10.

Original entry on oeis.org

0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 220, 242, 264, 286, 208, 220, 242, 264, 286, 208, 440, 462, 484, 406, 428, 440, 462, 484, 406, 428, 660, 682, 604, 626, 648, 660, 682, 604, 626, 648, 880, 802, 824, 846, 868, 880, 802, 824, 846, 868, 0, 22, 44, 66, 88, 0, 22, 44, 66, 88, 220, 242
Offset: 0

Views

Author

Keywords

Comments

The rules of arithmetic used in A169916, A169917, A169918 have very strange consequences. Many of the familiar laws fail. For instance, the arithmetic in A169916 is not associative: 10*(9*2) = 10*1 = 21 != (10*9)*2 = 9*2 = 1.

Examples

			a(16) = 16*16 = 242:
....16
....16
------
....72 (6*6 = 6+6 mod 10 = 2, 6*1 = 6+1 mod 10 = 7)
...27.
------
...242
------
		

Crossrefs

The four versions are A059729, A169916, A169917, A169918.

Programs

  • PARI
    A169916(n)={u=vector(#n=digits(n),i,1);n=apply(d->n+d*u,n)%10;sum(i=0,2*#n-2,sum(j=max(1,#n-i),min(2*#n-1-i,#n),n[2*#n-i-j][j])%10*10^i)} \\ M. F. Hasler, Mar 26 2015

Formula

a(n)=a(n') if respective digits of n and n' differ by 0 or 5. In particular, a(10k+m) = a(10k+m+5) if 0 <= m <= 4.