A170807 Take the standard 2-D lattice packing of pennies; a(n) = number of ways to pick n pennies (modulo rotations and reflections) such that the graph with nodes = centers of pennies, edges = pairs of touching pennies is connected and every edge belongs to at least one triangle.
1, 0, 1, 1, 2, 4, 7
Offset: 1
Examples
Examples for n=3,4,5,6,7: n=3: ..o .o.o n=4: ..o .o.o ..o n=5: ..o.o .o.o.o . ....o .o.o.o ..o n=6: .o.o.o o.o.o . ...o.o o.o.o .o . ...o o.o.o .o.o . ..o .o.o o.o.o n=7: ..o.o.o .o.o.o.o . ..o.o .o.o.o ..o.o . ...o.o ..o.o .o.o.o . ....o.o .o.o.o.o ..o . ....o.o ...o.o.o ..o.o . ....o .o.o.o.o ..o...o . .....o.o ..o.o.o .o.o
Crossrefs
Cf. A171604.
Extensions
a(6) and a(7) corrected by John W. Layman, Dec 17 2009