A170820 Let p = n-th prime; a(n) = (p-1)/(order of (p+3)/2 mod p).
2, 1, 1, 3, 1, 6, 2, 4, 1, 1, 1, 2, 2, 4, 1, 5, 2, 10, 2, 3, 1, 1, 12, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 5, 2, 2, 4, 3, 42, 1, 1, 1, 1, 2, 8, 1, 1, 2, 4, 1, 1, 7, 2, 4, 6, 2, 2, 4, 30, 2, 1, 1, 1, 2, 1, 3, 2, 2, 2, 1, 25, 4, 11, 1, 10, 2, 3, 1, 1, 8, 10, 33, 1, 2, 3, 1, 6, 2, 4, 1, 2, 1, 2, 2, 1
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..65536
- I. Anderson and D. A. Preece, Combinatorially fruitful properties of 3*2^(-1) and 3*2^(-2) modulo p, Discr. Math., 310 (2010), 312-324.
Programs
-
Maple
with(numtheory); [seq((ithprime(n)-1)/order((ithprime(n)+3)/2,ithprime(n)),n=3..130)];
-
Mathematica
a[n_] := Module[{p=Prime[n]}, (p-1)/MultiplicativeOrder[(p+3)/2, p]]; Array[a, 100, 3] (* Amiram Eldar, Dec 03 2018 *)
-
PARI
a(n) = my(p=prime(n)); (p-1)/znorder(Mod((p+3)/2, p)); \\ Michel Marcus, Dec 03 2018