A170822 Let p = n-th prime; a(n) = (p-1)/(order of A170821(n) mod p).
1, 3, 2, 2, 1, 1, 2, 1, 1, 12, 1, 1, 2, 1, 2, 4, 1, 14, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 10, 1, 3, 1, 1, 4, 9, 2, 1, 2, 18, 2, 16, 1, 1, 1, 1, 2, 2, 1, 2, 6, 2, 1, 2, 1, 1, 2, 1, 1, 1, 3, 10, 12, 1, 1, 42, 2, 12, 1, 2, 1, 4, 27, 2, 1, 4, 1, 6, 2, 6, 10, 4, 3, 2, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 1, 5
Offset: 3
Keywords
Examples
n=3: p=5, A170821(n)=2, order of 2 mod 5 = 4, (5-1)/4 = 1 = a(3).
Links
- I. Anderson and D. A. Preece, Combinatorially fruitful properties of 3*2^(-1) and 3*2^(-2) modulo p, Discr. Math., 310 (2010), 312-324.
Programs
-
PARI
f(n) = my(p=prime(n), k=0); while(Mod(4*k, p) != 3, k++); k; \\ A170821 a(n) = my(p=prime(n)); (p-1)/znorder(Mod(f(n), p)); \\ Michel Marcus, Dec 04 2018