cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A170822 Let p = n-th prime; a(n) = (p-1)/(order of A170821(n) mod p).

Original entry on oeis.org

1, 3, 2, 2, 1, 1, 2, 1, 1, 12, 1, 1, 2, 1, 2, 4, 1, 14, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 10, 1, 3, 1, 1, 4, 9, 2, 1, 2, 18, 2, 16, 1, 1, 1, 1, 2, 2, 1, 2, 6, 2, 1, 2, 1, 1, 2, 1, 1, 1, 3, 10, 12, 1, 1, 42, 2, 12, 1, 2, 1, 4, 27, 2, 1, 4, 1, 6, 2, 6, 10, 4, 3, 2, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 1, 5
Offset: 3

Views

Author

N. J. A. Sloane, Dec 24 2009

Keywords

Examples

			n=3: p=5, A170821(n)=2, order of 2 mod 5 = 4, (5-1)/4 = 1 = a(3).
		

Crossrefs

Programs

  • PARI
    f(n) = my(p=prime(n), k=0); while(Mod(4*k, p) != 3, k++); k; \\ A170821
    a(n) = my(p=prime(n)); (p-1)/znorder(Mod(f(n), p)); \\ Michel Marcus, Dec 04 2018

A170820 Let p = n-th prime; a(n) = (p-1)/(order of (p+3)/2 mod p).

Original entry on oeis.org

2, 1, 1, 3, 1, 6, 2, 4, 1, 1, 1, 2, 2, 4, 1, 5, 2, 10, 2, 3, 1, 1, 12, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 5, 2, 2, 4, 3, 42, 1, 1, 1, 1, 2, 8, 1, 1, 2, 4, 1, 1, 7, 2, 4, 6, 2, 2, 4, 30, 2, 1, 1, 1, 2, 1, 3, 2, 2, 2, 1, 25, 4, 11, 1, 10, 2, 3, 1, 1, 8, 10, 33, 1, 2, 3, 1, 6, 2, 4, 1, 2, 1, 2, 2, 1
Offset: 3

Views

Author

N. J. A. Sloane, Dec 24 2009

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); [seq((ithprime(n)-1)/order((ithprime(n)+3)/2,ithprime(n)),n=3..130)];
  • Mathematica
    a[n_] := Module[{p=Prime[n]}, (p-1)/MultiplicativeOrder[(p+3)/2, p]]; Array[a, 100, 3] (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    a(n) = my(p=prime(n)); (p-1)/znorder(Mod((p+3)/2, p)); \\ Michel Marcus, Dec 03 2018
Showing 1-2 of 2 results.