A170838 G.f.: Product_{k>=0} (1 + x^(2^k-1) + 3x^(2^k)).
2, 5, 9, 11, 11, 24, 36, 29, 11, 24, 38, 44, 57, 108, 135, 83, 11, 24, 38, 44, 57, 108, 137, 98, 57, 110, 158, 189, 279, 459, 486, 245, 11, 24, 38, 44, 57, 108, 137, 98, 57, 110, 158, 189, 279, 459, 488, 260, 57, 110, 158, 189, 279, 461, 509, 351, 281, 488, 663, 846, 1296
Offset: 0
Keywords
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
Maple
Maple program for A170838-A170852, A162956, A170854-A170872. read format; G := proc(a,b,c); mul( 1 + a*x^(2^n-1) + b*x^(2^n), n=c..20); end; f := proc(a,b,c) seriestolist(series(G(a,b,c),x,120)); end; at:=170838: for a from 1 to 2 do for c from 0 to 2 do b:=3; t1:=f(a,b,c); lprint( format(t1,at) ); lprint("G.f.: Prod_{k >= ", c, "} (1 +",a,"* x^(2^k-1) +",b,"* x^(2^k))."); at:=at+1; od: od: for b from 1 to 3 do for c from 0 to 2 do a:=3; t1:=f(a,b,c); lprint( format(t1,at) ); lprint("G.f.: Prod_{k >= ", c, "} (1 +",a,"* x^(2^k-1) +",b,"* x^(2^k))."); at:=at+1; od: od: h:=proc(r,s,a,b) local s1,n,i,j; s1:=array(0..120); s1[0]:=r; s1[1]:=s; for n from 2 to 120 do i:=floor(log(n)/log(2)); j:=n-2^i; s1[n]:=a*s1[j]+b*s1[j+1]; od: [seq(s1[n],n=0..120)]; end; l1:=[[0,1],[1,0],[1,1],[1,2]]; l2:=[[3,1],[3,2],[1,3],[2,3],[3,3]]; for i from 1 to 4 do for j from 1 to 5 do r:=l1[i][1]; s:=l1[i][2]; a:=l2[j][1]; b:=l2[j][2]; t1:=h(r,s,a,b); lprint(format(t1,at)); at:=at+1; lprint("a(0)=",r,", a(1)=", s, "; a(2^i+j)=",a,"*a(j)+",b,"a(j+1) for 0 <= j < 2^i."); od: od:
-
Mathematica
With[{nn=60},CoefficientList[Series[Product[1+x^(2^k-1)+3x^2^k,{k,0,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Dec 29 2021 *)