cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A160160 Toothpick sequence in the three-dimensional grid.

Original entry on oeis.org

0, 1, 3, 7, 15, 23, 31, 39, 55, 87, 143, 175, 191, 199, 215, 247, 303, 359, 423, 503, 655, 887, 1239, 1383, 1431, 1463, 1487, 1527, 1583, 1639, 1703, 1783, 1935, 2167, 2519, 2735, 2903, 3079, 3351, 3711, 4207, 4655, 5191, 5855, 7023, 8511, 10511, 11279, 11583, 11919, 12183, 12375, 12487, 12607
Offset: 0

Views

Author

Omar E. Pol, May 03 2009, May 06 2009

Keywords

Comments

Similar to A139250, except the toothpicks are placed in three dimensions, not two. The first toothpick is in the z direction. Thereafter, new toothpicks are placed at free ends, as in A139250, perpendicular to the existing toothpick, but choosing in rotation the x-direction, y-direction, z-direction, x-direction, etc.
The graph of this sequence has a nice self-similar shape: it looks the when the x-range is multiplied by 2, e.g. a(0..125) vs a(0..250) or a(0..500). - M. F. Hasler, Dec 12 2018

Crossrefs

Programs

  • PARI
    A160160_vec(n,o=1)={local(s(U)=[Vecsmall(Vec(V)+U)|V<-E], E=[Vecsmall([1,1,1])], J=[], M,A,B,U); [if(i>4, M+=8*#E=setminus(setunion(A=s(U=matid(3)[i%3+1,]), B=select(vecmin,s(-U))), J=setunion(setunion(setintersect(A,B),E),J)),M=1<M. F. Hasler, Dec 11 2018
    
  • PARI
    A160160(n)=sum(k=1,n,A160161[k]) \\ if A160161=A160161_vec(n) has already been computed. - M. F. Hasler, Dec 12 2018

Formula

Partial sums of A160161: a(n) = Sum_{1 <= k <= n} A160161(k) for all n >= 0. - M. F. Hasler, Dec 12 2018

Extensions

Edited by N. J. A. Sloane, Jan 02 2009
Extended to a(76) with C++ program and illustrations by R. J. Mathar, Jan 09 2010
Extended to 500 terms by M. F. Hasler, Dec 12 2018

A170884 In the toothpick structure of A160160, the number of nodes occupied after n steps, assuming that the toothpicks have length 2.

Original entry on oeis.org

0, 3, 7, 15, 27, 39, 51, 67, 99, 155, 223, 263, 283, 299, 331, 387, 467, 555, 659, 811, 1067, 1443, 1831, 1995, 2059, 2083, 2123, 2179, 2259, 2347, 2451, 2603, 2859, 3235, 3659, 3955, 4211, 4483, 4899, 5451
Offset: 0

Views

Author

Keywords

Comments

See A170885 for the first differences.

Crossrefs

Extensions

a(7)-a(39) from Nathaniel Johnston, Nov 13 2010

A170891 First differences of the toothpick sequence A170890.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 7, 8, 8, 6, 10, 8, 10, 12, 20, 20, 16, 12, 14, 8, 10, 12, 20, 20, 18, 18, 24, 22, 28, 40, 56, 52, 38, 28, 22, 8, 10, 12, 20, 20, 18, 18, 24, 22, 28, 40, 56, 52, 40, 34, 32, 22, 28, 40, 56, 54, 50, 56, 66, 68, 92, 132, 160, 138, 98, 68, 38
Offset: 0

Views

Author

Omar E. Pol, Jan 09 2010

Keywords

Comments

Number of toothpicks added at n-th stage to the toothpick structure of A170890. - Omar E. Pol, Jan 31 2013

Examples

			From _Omar E. Pol_, Jan 31 2013 (Start):
If written as an irregular triangle in which rows 0..4 have length 1, it appears that row j has length 2^(j-5), if j >= 5.
0;
1;
1;
2;
3;
3;
4,7;
8,8,6,10;
8,10,12,20,20,16,12,14;
8,10,12,20,20,18,18,24,22,28,40,56,52,38,28,22;
8,10,12,20,20,18,18,24,22,28,40,56,52,40,34,32,22,28,40,56,54,50,56,66,68,92,132,160,138,98,68,38;
(End)
		

Crossrefs

Extensions

a(9) corrected by Omar E. Pol, following an observation by Kevin Ryde, Jan 29 2013
Terms beyond a(9) from M. F. Hasler, Jan 29 2013
Showing 1-3 of 3 results.