cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A170887 First differences of toothpick sequence A170886.

Original entry on oeis.org

0, 1, 2, 2, 2, 4, 6, 6, 6, 8, 12, 6, 8, 12, 18, 14, 14, 20, 20, 6, 8, 12, 18, 14, 16, 24, 26, 16, 24, 38, 46, 38, 42, 52, 36, 6, 8, 12, 18, 14, 16, 24, 26, 16, 24, 38, 46, 38, 44, 56, 42, 16, 24, 38, 46, 40, 52, 70, 64, 52, 82, 118, 126, 114, 130, 132, 68, 6, 8, 12, 18, 14, 16, 24
Offset: 0

Views

Author

Omar E. Pol, Jan 09 2010

Keywords

Comments

Number of toothpicks added at n-th stage to the toothpick structure of A170886. - Omar E. Pol, Jan 31 2013

Examples

			From _Omar E. Pol_, Jan 30 2013: (Start)
If written as an irregular triangle in which rows 0..3 have length 1, it appears that row j has length 2^(j-4), if j >= 4. - _Omar E. Pol_, Jan 31 2013
0;
1;
2;
2;
2;
4,6;
6,6,8,12;
6,8,12,18,14,14,20,20;
6,8,12,18,14,16,24,26,16,24,38,46,38,42,52,36;
6,8,12,18,14,16,24,26,16,24,38,46,38,44,56,42,16,24,38,46,40,52,70,64,52,82,118,126,114,130,132,68;
6,8,12,18,14,16,24,...
(End)
		

Crossrefs

Extensions

More terms from R. J. Mathar, Jan 25 2010

A160406 Toothpick sequence starting at the vertex of an infinite 90-degree wedge.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 14, 18, 20, 22, 26, 30, 34, 40, 50, 58, 60, 62, 66, 70, 74, 80, 90, 98, 102, 108, 118, 128, 140, 160, 186, 202, 204, 206, 210, 214, 218, 224, 234, 242, 246, 252, 262, 272, 284, 304, 330, 346, 350, 356, 366, 376, 388, 408, 434, 452, 464, 484, 512, 542, 584
Offset: 0

Views

Author

Omar E. Pol, May 23 2009

Keywords

Comments

Consider the wedge of the plane defined by points (x,y) with y >= |x|, with the initial toothpick extending from (0,0) to (0,2); then extend by the same rule as for A139250, always staying inside the wedge.
Number of toothpick in the structure after n rounds.
The toothpick sequence A139250 is the main entry for this sequence. See also A153000. First differences: A160407.

Crossrefs

Programs

  • Maple
    G := (x + 2*x^2 + 4*x^2*(1+x)*(mul(1+x^(2^k-1)+2*x^(2^k),k=1..20)-1)/(1+2*x))/(1-x); P:=(G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)); series(P,x,200); seriestolist(%); # N. J. A. Sloane, May 25 2009
  • Mathematica
    terms = 62;
    G = (x + 2x^2 + 4x^2 (1+x)(Product[1+x^(2^k-1) + 2x^(2^k), {k, 1, Ceiling[ Log[2, terms]]}]-1)/(1+2x))/(1-x);
    P = (G + 2 + x(5-x)/(1-x)^2) x/(2(1+x));
    CoefficientList[P + O[x]^terms, x] (* Jean-François Alcover, Nov 03 2018, from Maple *)

Formula

A139250(n) = 2a(n) + 2a(n+1) - 4n - 1 for n > 0. - N. J. A. Sloane, May 25 2009
Let G = (x + 2*x^2 + 4*x^2*(1+x)*((Product_{k>=1} (1 + x^(2^k-1) + 2*x^(2^k))) - 1)/(1+2*x))/(1-x) (= g.f. for A139250); then the g.f. for the present sequence is (G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)). - N. J. A. Sloane, May 25 2009

Extensions

More terms from N. J. A. Sloane, May 25 2009
Definition revised by N. J. A. Sloane, Jan 02 2010

A170888 Similar to A160406, but always staying outside the wedge, starting at stage 0 with a vertical half-toothpick which protrudes from the vertex of the wedge.

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 21, 31, 39, 43, 49, 59, 69, 81, 101, 127, 143, 147, 153, 163, 173, 185, 205, 231, 249, 261, 281, 309, 339, 381, 445, 511, 543, 547, 553, 563, 573, 585, 605, 631, 649, 661, 681, 709, 739, 781, 845, 911, 945, 957, 977, 1005, 1035, 1077, 1141
Offset: 0

Views

Author

Omar E. Pol, Jan 09 2010

Keywords

Comments

See A170889 for the first differences.

Crossrefs

Extensions

Terms beyond a(10) from R. J. Mathar, Jan 25 2010

A170890 Toothpick sequence similar to A160406, but always staying outside the wedge, starting with a horizontal half-toothpick which protrudes from the vertex of the wedge.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 14, 21, 29, 37, 43, 53, 61, 71, 83, 103, 123, 139, 151, 165, 173, 183, 195, 215, 235, 253, 271, 295, 317, 345, 385, 441, 493, 531, 559, 581, 589, 599, 611, 631, 651, 669, 687, 711, 733, 761, 801, 857, 909, 949, 983, 1015, 1037, 1065, 1105, 1161
Offset: 0

Views

Author

Omar E. Pol, Jan 09 2010

Keywords

Comments

The initial half-tookpick makes an angle of 90 degrees w.r.t. the wedge's direction. This breaks the symmetry and explains the changing parity of the terms. - M. F. Hasler, Jan 29 2013

Examples

			From _M. F. Hasler_, Jan 29 2013: (Start)
The first steps are illustrated as follows, where two vertical "|" or three horizontal "_" correspond to one single full toothpick:
:                                ___ ___  |___ ___|
:                 ___    |___|    |___|   | |___| |
:   _      |_      |_    | |_|    | |_|   | | |_|
:   /\     |/\     |/\     |/\   ¯¯¯|/\   |¯¯¯|/\
:  /  \    /  \    /  \    /  \     /  \      /  \
:
: a(0)=0, a(1)=1, a(2)=2, a(3)=4, a(5)=7, a(6)=10, ... (End)
		

Crossrefs

See A170891 for the first differences.

Programs

  • PARI
    A170890(n, print_all=0)={ my( cnt=n>0, ee=[[1,1]], p=Set(vector(2*n-cnt,k,k-n-abs(k-n)*I)), c, d); for(i=2, n, print_all & print1(cnt","); p=setunion(p, Set(Mat(ee~)[, 1])); my(ne=[]); for(k=1, #ee, setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne, Set([[c, d]])); setsearch(p, c-2*d) || ne=setunion(ne, Set([[c-2*d, -d]]))); forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] & k-- & ee=vecextract(ee, Str("^"k"..", k+1))); cnt+=#ee); cnt} \\ - M. F. Hasler, Jan 29 2013

Extensions

a(9) corrected by Omar E. Pol, following an observation by Kevin Ryde, Jan 29 2013
Terms beyond a(9) from M. F. Hasler, Jan 29 2013

A170892 Toothpick sequence similar to A160406, but always staying outside the wedge, starting at stage 1 with a vertical toothpick whose endpoint touches the vertex of the wedge.

Original entry on oeis.org

0, 1, 2, 4, 8, 12, 16, 24, 34, 44, 48, 56, 66, 78, 90, 112, 138, 156, 160, 168, 178, 190, 202, 224, 250, 270, 282, 304, 332, 364, 406, 472, 538, 572, 576, 584, 594, 606, 618, 640, 666, 686, 698, 720, 748, 780, 822, 888, 954, 990, 1002, 1024, 1052, 1084, 1126, 1192, 1260, 1308, 1350, 1418, 1502, 1604, 1750, 1944
Offset: 0

Views

Author

Omar E. Pol, Jan 09 2010

Keywords

Comments

See A170893 for the first differences.

Crossrefs

Programs

  • PARI
    A170892(n, print_all=0)={my( ee=[[2*I, I]], p=Set( concat( vector( 2*n-(n>0),k,k-n-abs(k-n)*I ), I )), cnt=2); print_all & print1("1,2"); n<3 & return(n); for(i=3, n, p=setunion(p, Set(Mat(ee~)[, 1])); my(c, d, ne=[]); for( k=1, #ee, setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne, Set([[c, d]])); setsearch(p, c-2*d) || ne=setunion(ne, Set([[c-2*d, -d]]))); forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] & k-- & ee=vecextract(ee, Str("^"k"..", k+1))); cnt+=#ee; print_all & print1(","cnt)); cnt} \\ - M. F. Hasler, Jan 30 2013

Extensions

Terms beyond a(10) from M. F. Hasler, Jan 30 2013
Showing 1-5 of 5 results.