cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170904 Sequence obtained by a formal reading of Riordan's Eq. (30a), p. 206.

Original entry on oeis.org

1, 0, 0, 2, 24, 572, 21280, 1074390, 70299264, 5792903144, 587159944704, 71822748886440, 10435273503677440, 1776780701352504408, 350461958856515690496, 79284041282799128098778, 20392765404792755583221760, 5917934230798152486136427600, 1924427226324694427836833857536
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2010

Keywords

Comments

See the comments in A000186 for further discussion.
Neven Juric alerted me to the fact that Riordan's formula is misleading.
It is not error of Riordan, since, according to the rook theory, he considered U(1) to be -1. [Vladimir Shevelev, Apr 02 2010]
A combinatorial argument, valid for n >= 2, leads to Touchard's formula for the n-th menage number, U(n), a formula which involves the coefficients of Chebyshev polynomials of the first kind. It is combinatorially reasonable to take U(0) = 1 and U(1) = 0, leading to A335700, but taking the connection with Chebyshev polynomials seriously instead gives U(0) = 2 and U(1) = -1, leading to A102761. Riordan derives equation (30) on page 205 for the number of reduced three-line Latin rectangles (A000186) by making use of product identities on Chebyshev polynomials, and therefore requires the second definition; it also requires extending the definition of menage numbers to negative index. Riordan then obtains equation (30a) on page 206 by eliminating the negative indices and redefining U(0) to be 1 (which leads to A000179). A170904 (this sequence) is what is obtained by mistakenly using A335700 instead of A000179 in Riordan's equation (30a). - William P. Orrick, Aug 11 2020

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 206, 209.

Programs

  • Maple
    # A000166
    unprotect(D);
    D := proc(n) option remember; if n<=1 then 1-n else (n-1)*(D(n-1)+D(n-2)); fi; end;
    [seq(D(n),n=0..30)];
    # A335700 (equals A000179 except that A335700(1) = 0)
    U := proc(n) if n<=1 then 1-n else add ((-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k), k=0..n); fi; end;
    [seq(U(n),n=0..30)];
    # bad A000186 (A170904)
    Kbad:=proc(n) local k; global D, U; add( binomial(n,k)*D(n-k)*D(k)*U(n-2*k), k=0..floor(n/2) ); end;
    [seq(Kbad(n),n=0..30)];

Formula

One can enumerate 3 X n Latin rectangles by the formula A000186(2n)=a(2n) and A000186(2n+1)=a(2n+1)-A001700(n)*A000166(n)*A000166(n+1). - Vladimir Shevelev, Apr 04 2010
a(2n)=A000186(2n), a(2n+1)=A000186(2n+1)+A001700(n)*A000166(n)*A000166(n+1). [From Vladimir Shevelev, Apr 02 2010]

Extensions

Edited by N. J. A. Sloane, Apr 04 2010 following a suggestion from Vladimir Shevelev