A170904 Sequence obtained by a formal reading of Riordan's Eq. (30a), p. 206.
1, 0, 0, 2, 24, 572, 21280, 1074390, 70299264, 5792903144, 587159944704, 71822748886440, 10435273503677440, 1776780701352504408, 350461958856515690496, 79284041282799128098778, 20392765404792755583221760, 5917934230798152486136427600, 1924427226324694427836833857536
Offset: 0
Keywords
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 206, 209.
Programs
-
Maple
# A000166 unprotect(D); D := proc(n) option remember; if n<=1 then 1-n else (n-1)*(D(n-1)+D(n-2)); fi; end; [seq(D(n),n=0..30)]; # A335700 (equals A000179 except that A335700(1) = 0) U := proc(n) if n<=1 then 1-n else add ((-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k), k=0..n); fi; end; [seq(U(n),n=0..30)]; # bad A000186 (A170904) Kbad:=proc(n) local k; global D, U; add( binomial(n,k)*D(n-k)*D(k)*U(n-2*k), k=0..floor(n/2) ); end; [seq(Kbad(n),n=0..30)];
Formula
Extensions
Edited by N. J. A. Sloane, Apr 04 2010 following a suggestion from Vladimir Shevelev
Comments