A170913 Write cos(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = denominator(g_n).
2, 24, 360, 13440, 453600, 47900160, 5448643200, 2988969984000, 3126159036000, 101370917007360000, 4390627842881280000, 552984315270266880000, 393839317506450816000000, 1465809349094778175488000000, 129517997955171415349760000000, 263130836933693530167218012160000000
Offset: 1
Examples
-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
Links
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
Crossrefs
Cf. A170912.
Programs
-
Maple
t1:=cos(x); L:=100; t0:=series(t1, x, L): g:=[]; M:=40; t2:=t0: for n from 1 to M do t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3]; od: g; h:=[seq(g[2*n], n=1..nops(g)/2)]; h1:=map(numer, h); h2:=map(denom, h);
-
Mathematica
A[m_, n_] := A[m, n] = Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]]; a[n_] := Denominator[A[n, n]]; a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)