A170919 a(n) = denominator of the coefficient c(n) of x^n in (tan x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...
1, 1, 3, 3, 5, 45, 105, 315, 2835, 14175, 5775, 467775, 6081075, 2837835, 212837625, 70945875, 3618239625, 97692469875, 206239658625, 9280784638125, 1031198293125, 142924083427125, 322279795963125, 101111706320625, 136968913284328125, 161872352063296875
Offset: 1
Examples
1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
Links
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
Crossrefs
Programs
-
Maple
L := 28: g := NULL: t := series(tan(x), x, L): for n from 1 to L-2 do c := coeff(t, x, n); t := series(t/(1 + c*x^n), x, L); g := g, c; od: map(denom, [g]); # Based on Maple in A170918. - Peter Luschny, Oct 05 2019
Extensions
Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022