A178482 Phi-antipalindromic numbers.
1, 3, 4, 7, 8, 10, 11, 18, 19, 21, 22, 25, 26, 28, 29, 47, 48, 50, 51, 54, 55, 57, 58, 65, 66, 68, 69, 72, 73, 75, 76, 123, 124, 126, 127, 130, 131, 133, 134, 141, 142, 144, 145, 148, 149, 151, 152, 170, 171, 173, 174
Offset: 1
Examples
The vectors of exponents of 4 and 5 are (-2,0,2) and (-4,-1,3) correspondingly (cf.A104605). Therefore by definition 4 is a phi-antipalindromic number, while 5 is not. Let n=38. Then k=5. Thus a(38)=A005248(5)+a(6)=123+10=133. The vector of exponents of phi in the base-phi expansion of 133 is (-10,-4,-2,2,4,10).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..3071 from R. J. Mathar)
- Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023.
Crossrefs
Programs
-
Mathematica
phiAPQ[1] = True; phiAPQ[n_] := Module[{d = RealDigits[n, GoldenRatio, 2*Ceiling[Log[GoldenRatio, n]]]}, e = d[[2]] - Flatten @ Position[d[[1]], 1]; Reverse[e] == -e]; Select[Range[200], phiAPQ] (* Amiram Eldar, Apr 23 2020 *)
Formula
For k>=1, a(2^k)=A005248(k); if 2^k
A171070 A bisection of A178482.
1, 4, 8, 11, 19, 22, 26, 29, 48, 51, 55, 58, 66, 69, 73, 76, 124, 127, 131, 134, 142, 145, 149, 152, 171, 174, 178, 181, 189, 192, 196, 199, 323, 326, 330, 333, 341, 344, 348, 351, 370, 373, 377, 380, 388, 391, 395, 398, 446, 449, 453, 456, 464, 467, 471, 474, 493, 496, 500
Offset: 1
Keywords
Comments
An initial 1, followed by terms of A171071 plus 1. - Hans Havermann, Sep 05 2010
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Comments