A171145
The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + n*x + 1)^Floor[n/2]].
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 27, 10, 1, 1, 11, 37, 37, 11, 1, 1, 21, 150, 385, 150, 21, 1, 1, 22, 171, 535, 535, 171, 22, 1, 1, 36, 490, 3024, 7539, 3024, 490, 36, 1, 1, 37, 526, 3514, 10563, 10563, 3514, 526, 37, 1, 1, 55, 1215, 13530, 76845, 188001, 76845
Offset: 1
{1},
{1, 1},
{1, 3, 1},
{1, 4, 4, 1},
{1, 10, 27, 10, 1},
{1, 11, 37, 37, 11, 1},
{1, 21, 150, 385, 150, 21, 1},
{1, 22, 171, 535, 535, 171, 22, 1},
{1, 36, 490, 3024, 7539, 3024, 490, 36, 1},
{1, 37, 526, 3514, 10563, 10563, 3514, 526, 37, 1},
{1, 55, 1215, 13530, 76845, 188001, 76845, 13530, 1215, 55, 1},
{1, 56, 1270, 14745, 90375, 264846, 264846, 90375, 14745, 1270, 56, 1}
-
Clear[p, n, x, a]
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + n*x + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a]
A171146
The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n - 1)*x + 1)^Floor[n/2]] ( correction).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 18, 83, 18, 1, 1, 19, 101, 101, 19, 1, 1, 39, 510, 2275, 510, 39, 1, 1, 40, 549, 2785, 2785, 549, 40, 1, 1, 68, 1738, 19856, 86995, 19856, 1738, 68, 1, 1, 69, 1806, 21594, 106851, 106851, 21594, 1806, 69, 1, 1, 105, 4415, 93030, 985645
Offset: 1
{1},
{1, 1},
{1, 5, 1},
{1, 6, 6, 1},
{1, 18, 83, 18, 1},
{1, 19, 101, 101, 19, 1},
{1, 39, 510, 2275, 510, 39, 1},
{1, 40, 549, 2785, 2785, 549, 40, 1},
{1, 68, 1738, 19856, 86995, 19856, 1738, 68, 1},
{1, 69, 1806, 21594, 106851, 106851, 21594, 1806, 69, 1},
{1, 105, 4415, 93030, 985645, 4269951, 985645, 93030, 4415, 105, 1},
{1, 106, 4520, 97445, 1078675, 5255596, 5255596, 1078675, 97445, 4520, 106, 1}
-
Clear[p, n, x, a]
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + (2*n - 1)*x + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a]
A171147
The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n)*x + 1)^Floor[n/2]].
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 7, 7, 1, 1, 20, 102, 20, 1, 1, 21, 122, 122, 21, 1, 1, 42, 591, 2828, 591, 42, 1, 1, 43, 633, 3419, 3419, 633, 43, 1, 1, 72, 1948, 23544, 108870, 23544, 1948, 72, 1, 1, 73, 2020, 25492, 132414, 132414, 25492, 2020, 73, 1, 1, 110, 4845, 106920
Offset: 1
{1},
{1, 1},
{1, 6, 1},
{1, 7, 7, 1},
{1, 20, 102, 20, 1},
{1, 21, 122, 122, 21, 1},
{1, 42, 591, 2828, 591, 42, 1},
{1, 43, 633, 3419, 3419, 633, 43, 1},
{1, 72, 1948, 23544, 108870, 23544, 1948, 72, 1},
{1, 73, 2020, 25492, 132414, 132414, 25492, 2020, 73, 1},
{1, 110, 4845, 106920, 1185810, 5367252, 1185810, 106920, 4845, 110, 1},
{1, 111, 4955, 111765, 1292730, 6553062, 6553062, 1292730, 111765, 4955, 111, 1}
-
Clear[p, n, x, a]
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + (2*n)*x + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a]
Showing 1-3 of 3 results.
Comments