cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171147 The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n)*x + 1)^Floor[n/2]].

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 7, 7, 1, 1, 20, 102, 20, 1, 1, 21, 122, 122, 21, 1, 1, 42, 591, 2828, 591, 42, 1, 1, 43, 633, 3419, 3419, 633, 43, 1, 1, 72, 1948, 23544, 108870, 23544, 1948, 72, 1, 1, 73, 2020, 25492, 132414, 132414, 25492, 2020, 73, 1, 1, 110, 4845, 106920
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 04 2009

Keywords

Comments

Row sums are:
{1, 2, 8, 16, 144, 288, 4096, 8192, 160000, 320000, 7962624, 15925248...}.

Examples

			{1},
{1, 1},
{1, 6, 1},
{1, 7, 7, 1},
{1, 20, 102, 20, 1},
{1, 21, 122, 122, 21, 1},
{1, 42, 591, 2828, 591, 42, 1},
{1, 43, 633, 3419, 3419, 633, 43, 1},
{1, 72, 1948, 23544, 108870, 23544, 1948, 72, 1},
{1, 73, 2020, 25492, 132414, 132414, 25492, 2020, 73, 1},
{1, 110, 4845, 106920, 1185810, 5367252, 1185810, 106920, 4845, 110, 1},
{1, 111, 4955, 111765, 1292730, 6553062, 6553062, 1292730, 111765, 4955, 111, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, n, x, a]
    p[x, 1] := 1;
    p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + (2*n)*x + 1)^Floor[n/2]];
    a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
    Flatten[a]

Formula

p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n)*x + 1)^Floor[n/2]]