cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171157 Number of distinct primes > 3 that divide n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 04 2009

Keywords

Crossrefs

Programs

  • Maple
    omega := proc(n) nops(numtheory[factorset](n)) ; end proc:
    A171182 := proc(n) op(1+ (n mod 6),[2,0,1,1,1,0]) ; end proc:
    A171157 := proc(n) omega(n)-A171182(n) ; end proc: seq(A171157(n),n=1..120) ; # R. J. Mathar, Dec 09 2009
  • Mathematica
    Table[PrimeNu[n] - (5 + 3*Cos[n*Pi] + 4*Cos[2*n*Pi/3])/6, {n, 1, 100}] (* G. C. Greubel, May 16 2017 *)
    Table[Count[FactorInteger[n][[;;,1]],?(#>3&)],{n,110}] (* _Harvey P. Dale, Nov 16 2024 *)
  • PARI
    for(n=1,100, print1(round(omega(n) - (5 + 3*cos(n*Pi) + 4*cos(2*n*Pi/3))/6), ", ")) \\ G. C. Greubel, May 16 2017

Formula

a(n) = A001221(n) - A171182(n).