A171158 The number of walks from (0,0,0) to (n,n,n) with steps that increment one to three coordinates and having the property that no two consecutive steps are orthogonal.
1, 1, 19, 235, 3181, 44725, 648439, 9614329, 145020445, 2217212539, 34269961873, 534449721793, 8397498847645, 132785160326593, 2111135363144743, 33723822603109987, 540949658114010583, 8708952402795685879, 140665766088396528829, 2278642960112808284773
Offset: 0
Examples
For n = 2, the 19 walks are: 000 -> 001 -> 012 -> 122 -> 222 000 -> 001 -> 102 -> 212 -> 222 000 -> 001 -> 112 -> 222 000 -> 010 -> 021 -> 122 -> 222 000 -> 010 -> 120 -> 221 -> 222 000 -> 010 -> 121 -> 222 000 -> 011 -> 112 -> 222 000 -> 011 -> 121 -> 222 000 -> 011 -> 122 -> 222 000 -> 100 -> 201 -> 212 -> 222 000 -> 100 -> 210 -> 221 -> 222 000 -> 100 -> 211 -> 222 000 -> 101 -> 112 -> 222 000 -> 101 -> 211 -> 222 000 -> 101 -> 212 -> 222 000 -> 110 -> 121 -> 222 000 -> 110 -> 211 -> 222 000 -> 110 -> 221 -> 222 000 -> 111 -> 222
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
See A171155 for the number of such walks in two dimensions.
See A171563 for the number of such walks in four dimensions. - Lee A. Newberg, Dec 11 2009
Formula
a(n) ~ c * d^n / n, where d = 17.073685937995..., c = 0.171212682922... . - Vaclav Kotesovec, Sep 10 2014
Extensions
Extended beyond a(10) by Alois P. Heinz, Jan 22 2013
Comments