cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A171185 G.f.: exp( Sum_{n>=1} (x^n/n)*[Sum_{k=0..[n/2]} A034807(n,k)^3] ), where A034807 is a triangle of Lucas polynomials.

Original entry on oeis.org

1, 1, 5, 14, 40, 126, 408, 1332, 4473, 15377, 53627, 189724, 680475, 2467975, 9038578, 33399571, 124400702, 466619283, 1761467038, 6688059913, 25527326897, 97901917060, 377123873505, 1458573962761, 5662223702216, 22056563938599
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 40*x^4 + 126*x^5 + 408*x^6 +...
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 73*x^4/4 + 251*x^5/5 + 954*x^6/6 +...+ A171215(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(x^m/m)*sum(k=0, m\2, (binomial(m-k, k)+binomial(m-k-1, k-1))^3))+x*O(x^n)),n)}
Showing 1-1 of 1 results.