cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171243 Riordan array (f(x), x*g(x)), f(x) is the g.f. of A126952, g(x) is the g.f. of A117641.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 21, 6, 1, 1, 93, 25, 7, 1, 1, 421, 112, 29, 8, 1, 1, 1937, 510, 132, 33, 9, 1, 1, 9017, 2357, 606, 153, 37, 10, 1, 1, 42349, 11009, 2819, 709, 175, 41, 11, 1, 1, 200277, 51840, 13233, 3324, 819, 198, 45, 12, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2009

Keywords

Comments

Expansion of row sums of T_(x,3), T_(x,y) defined in A039599.
Matrix product P^3 * Q * P^(-3), where P denotes Pascal's triangle A007318 and Q denotes A061554 (formed from P by sorting the rows into descending order). Cf. A158793 and A158815. - Peter Bala, Jul 13 2021

Examples

			Triangle begins:
    1;
    1,   1;
    5,   1,  1;
   21,   6,  1, 1;
   93,  25,  7, 1, 1;
  421, 112, 29, 8, 1, 1;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A126952(n), A126568(n), A026375(n), A026378(n+1), A000351(n) for x = 0,1,2,3,4 respectively.

A171486 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A033321.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 21, 16, 9, 4, 1, 79, 58, 31, 14, 5, 1, 311, 224, 117, 52, 20, 6, 1, 1265, 900, 465, 205, 80, 27, 7, 1, 5275, 3720, 1910, 840, 330, 116, 35, 8, 1, 22431, 15713, 8034, 3532, 1396, 501, 161, 44, 9, 1, 96900, 67522, 34419, 15136, 6015, 2190
Offset: 0

Views

Author

Philippe Deléham, Dec 09 2009

Keywords

Comments

Equal to B*A065600 = A171224*B where B = A007318 ; equal to B*A039598*B^(-2).

Examples

			Triangle begins :
1
1, 1
2, 2, 1
6, 5, 3, 1
21, 16, 9, 4, 1
79, 58, 31, 14, 5, 1
311, 224, 117, 52, 20, 6, 1
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A117641(n), A033321(n), A007317(n+1), A002212(n+1), A026378(n+1) for x = -1, 0, 1, 2, 3 respectively.
T(n,k) = T(n-1,k-1) + T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*2^i. - Philippe Deléham, Feb 23 2012
Showing 1-2 of 2 results.