A171229 Triangle T(n,k) read by rows: T(0,k)=1, otherwise T(n,k)= 1 + floor(n!*exp(-(k-floor(n)/2)^2)).
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 9, 25, 9, 1, 1, 13, 94, 94, 13, 1, 1, 14, 265, 721, 265, 14, 1, 1, 10, 532, 3926, 3926, 532, 10, 1, 1, 5, 739, 14833, 40321, 14833, 739, 5, 1, 1, 2, 701, 38248, 282612, 282612, 38248, 701, 2, 1, 1, 1, 448, 66464, 1334961, 3628801
Offset: 0
Examples
{1}, {1, 1}, {1, 3, 1}, {1, 5, 5, 1}, {1, 9, 25, 9, 1}, {1, 13, 94, 94, 13, 1}, {1, 14, 265, 721, 265, 14, 1}, {1, 10, 532, 3926, 3926, 532, 10, 1}, {1, 5, 739, 14833, 40321, 14833, 739, 5, 1}, {1, 2, 701, 38248, 282612, 282612, 38248, 701, 2, 1}, {1, 1, 448, 66464, 1334961, 3628801, 1334961, 66464, 448, 1, 1}
Links
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, see page 695.
Crossrefs
Cf. A008292
Programs
-
Maple
T:= proc(n,k) if n=0 then 1 else 1 + floor(n!*exp(-(k-floor(n)/2)^2)) fi end proc: for n from 0 to 20 do seq(T(n,k),k=0..n) od; # Robert Israel, Nov 30 2014
-
Mathematica
t[n_, k_] = If[n == 0, 1, 1 + Floor[n!*Exp[ -(k - Floor[n]/2)^2]]] a = Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] Flatten[a]
Extensions
Edited by Joerg Arndt, Nov 29 2014
Comments