A171444 Sum of three consecutive reversed primes.
10, 15, 23, 49, 113, 193, 194, 215, 137, 178, 100, 121, 122, 143, 204, 146, 187, 109, 130, 151, 172, 233, 215, 278, 481, 1103, 1903, 1913, 1933, 1163, 1583, 1793, 2603, 2023, 1843, 1263, 1873, 1493, 2103, 1523, 1343, 763, 1373, 2173, 1894, 1425
Offset: 1
Examples
(from primes 11, 13, and 17): 11 + 31 + 71 = 113; (from primes 13, 17, and 19): 31 + 71 + 91 = 193; (from primes 173, 179, and 181): 371 + 971 + 181 = 1523.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Table[r[Prime[n]] + r[Prime[n+1]] + r[Prime[n+2]], {n, 50}]
Formula
a(n) = r(p(n)) + r(p(n+1)) + r(p(n+2)) where p(n) is the n-th prime number and r(n) is the number obtained by the reversal of the digits of n (e.g., r(1230) = 321).
Extensions
More terms from Matthew Conroy, Dec 28 2010