cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171453 a(n) = sum_i p_i^(e_i-1) where n = product_i p_i^e_i is the prime number decomposition of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 2, 8, 1, 4, 1, 3, 2, 2, 1, 5, 5, 2, 9, 3, 1, 3, 1, 16, 2, 2, 2, 5, 1, 2, 2, 5, 1, 3, 1, 3, 4, 2, 1, 9, 7, 6, 2, 3, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 4, 32, 2, 3, 1, 3, 2, 3, 1, 7, 1, 2, 6, 3, 2, 3, 1, 9, 27, 2, 1, 4, 2, 2, 2, 5, 1, 5, 2, 3, 2, 2, 2, 17, 1, 8, 4, 7
Offset: 1

Views

Author

R. J. Mathar, Dec 09 2009

Keywords

Crossrefs

Programs

  • Maple
    A171453 := proc(n) add( op(1,f)^(op(2,f)-1),f =ifactors(n)[2]) ; end proc:
    seq(A171453(n),n=1..100) ;
  • PARI
    A171453(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^(f[i,2]-1))); }; \\ Antti Karttunen, Sep 24 2017
    
  • Python
    from sympy import factorint
    def A171453(n): return sum(p**(e-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 01 2024

Formula

a(n) = A008475(n) - A067240(n).