A171453 a(n) = sum_i p_i^(e_i-1) where n = product_i p_i^e_i is the prime number decomposition of n.
0, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 2, 8, 1, 4, 1, 3, 2, 2, 1, 5, 5, 2, 9, 3, 1, 3, 1, 16, 2, 2, 2, 5, 1, 2, 2, 5, 1, 3, 1, 3, 4, 2, 1, 9, 7, 6, 2, 3, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 4, 32, 2, 3, 1, 3, 2, 3, 1, 7, 1, 2, 6, 3, 2, 3, 1, 9, 27, 2, 1, 4, 2, 2, 2, 5, 1, 5, 2, 3, 2, 2, 2, 17, 1, 8, 4, 7
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A171453 := proc(n) add( op(1,f)^(op(2,f)-1),f =ifactors(n)[2]) ; end proc: seq(A171453(n),n=1..100) ;
-
PARI
A171453(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^(f[i,2]-1))); }; \\ Antti Karttunen, Sep 24 2017
-
Python
from sympy import factorint def A171453(n): return sum(p**(e-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 01 2024