A171503 Number of 2 X 2 integer matrices with entries from {0,1,...,n} having determinant 1.
0, 3, 7, 15, 23, 39, 47, 71, 87, 111, 127, 167, 183, 231, 255, 287, 319, 383, 407, 479, 511, 559, 599, 687, 719, 799, 847, 919, 967, 1079, 1111, 1231, 1295, 1375, 1439, 1535, 1583, 1727, 1799, 1895, 1959, 2119, 2167, 2335, 2415, 2511, 2599
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n<2, [0, 3][n+1], a(n-1) + 4*phi(n)) end: seq(a(n), n=0..60);
-
Mathematica
a[n_]:=Count[Det/@(Partition[ #,2]&/@Tuples[Range[0,n],4]),1] (* Second program: *) a[0] = 0; a[1] = 3; a[n_] := a[n] = a[n-1] + 4*EulerPhi[n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 16 2018 *)
-
PARI
a(n)=(n>0)+2*sum(k=1, n, moebius(k)*(n\k)^2) \\ Charles R Greathouse IV, Apr 20 2015
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A171503(n): # based on second formula in A018805 if n == 0: return 0 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(A171503(k1)-1)//2 j, k1 = j2, n//j2 return 2*(n*(n-1)-c+j) - 1 # Chai Wah Wu, Mar 25 2021
Formula
Recursion: a(n) = a(n - 1) + 4*phi(n) for n > 1, with phi being Euler's totient function. - Juan M. Marquez, Jan 19 2010
a(n) = 4 * A002088(n) - 1 for n >= 1. - Robert Israel, Jun 01 2014
Extensions
Edited by Alois P. Heinz, Jan 19 2011
Comments
Juan M. Marquez, Apr 13 2015