A171522 Denominator of 1/n^2-1/(n+2)^2.
0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-10,0,10,0,-5,0,1).
Programs
-
Maple
A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end: seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
-
Mathematica
a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
-
PARI
concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014
Formula
a(n) = (A066830(n+1))^2.
a(n) = -((-5+3*(-1)^n)*n^2*(2+n)^2)/8. - Colin Barker, Nov 05 2014
G.f.: x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5). - Colin Barker, Nov 05 2014
Extensions
Edited and extended by R. J. Mathar, Dec 15 2009
Comments