A171587 Sequence of the diagonal variant of the Fibonacci word fractal. Sequence of the Fibonacci tile.
0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0
Offset: 0
Keywords
Examples
q[2] = q[1]q[0] = 0, q[3] = q[2]bar{q[1]} = 01, q[4] = q[3]bar{q[2]} = 011, q[5] = q[4]q[3] = 01101.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé, Christoffel and Fibonacci Tiles, DGCI 2009. Lecture Notes in Computer Science, vol 5810.
- A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé, Christoffel and Fibonacci tiles, Sept 2009.
- A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé, Christoffel and Fibonacci tiles presentation, Sept 2009.
- Bradley Klee, Missing Words Proof Certificate (Golang)
- Bradley Klee, Turns Equivalence Proof Certificate (Golang)
- Bradley Klee, Drawing of Fibonacci word fractal
- Alexis Monnerot-Dumaine, The Fibonacci word fractal, Feb 2009.
- Alexis Monnerot-Dumaine, The Fibonacci word fractal [Cached copy, with permission]
Crossrefs
Programs
-
Go
func b(n int) []int { a := make([]int, n+1); for i:=1; i < n+1; i++ { a[i] = i-a[a[i-1]]; }; for i:=0; i < n+1; i++ { a[i] %= 2; }; return a } // Bradley Klee, Dec 25 2024
-
Mathematica
(* This program supports the conjecture that A171587=(A001950 mod 2). *) t = Nest[Flatten[# /. {1 -> {1, 0, 2, 2}, 0 -> {1, 0, 2, 2, 1}, 2 -> {1, 0, 2, 1}}] &, {1}, 5] w = DeleteCases[t, 0] /. {1 -> 0, 2 -> 1} u = Table[n + Floor[n*GoldenRatio], {n, 1, 500}]; v = Mod[u, 2] Table[w[[n]] - v[[n]], {n, 1, 500}] (* supports conjecture for n=1,2,...,500 *) (* t=A143667, w=A171587, u=A001950, conjecture: v=w *)
Formula
This sequence is defined by Blondin-Massé et al. as a limit of recursively defined words q[n]. Here q[0] is the empty word, and q[1]=0.
The recursion is given by
q[n]=q[n-1]q[n-2] if n=2 mod 3, and
q[n]=q[n-1]bar{q[n-2]} if n=0 or 1 mod 3,
where bar exchanges 0 and 1.
Also application of the mapping 1->0, 2->1, 0->empty word to the Dense Fibonacci word A143667.
Conjecture: A171587=(A001950 mod 2), as suggested for n=1,2,...,500 by Mathematica program below. - Clark Kimberling, May 31 2011
From Michel Dekking, May 03 2018: (Start)
Proof of Kimberling's 2011 conjecture, i.e., this sequence is the parity sequence of the Upper Wythoff sequence A001950.
The first difference sequence 3, 2, 3, 3, 2, 3, 2, 3, ... of the Upper Wythoff sequence is equal to the unique fixed point of the morphism
beta: 2 -> 3, 3 -> 32 (cf. A282162).
We define the first difference operator D on finite words w by
D(w(1)...w(m)) = (w(2)-w(1))...(w(m)-w(m-1)).
Note that the length of D(w) is one less than the length of w, and note
LEMMA 1: D(vw) = D(v)|w(1)-v(l)|D(w), if v = v(1)...v(l), and w = w(1)...w(m). Here |w(1)-v(l)| is modulo 2.
We also need (easily proved by induction)
LEMMA 2: The last letter of the word q[n] equals 0 if and only if n = 0,1,2 modulo 6.
Almost trivial is
LEMMA 3: The last letter e(n) of beta^n(2) equals 2 if and only if n = 0 modulo 2.
The following proposition implies the conjecture.
PROPOSITION: The difference sequence of q[n] satisfies D(q[n]) = beta^{n-1}(2) e(n-1)^{-1} modulo 2 for n>3.
Note that, by definition, beta^n(2) e(n)^{-1} is just the word beta^n(2), with the last letter removed.
PROOF: By induction. Combine Lemma 1, 2 and 3 in the recursion for the q[n], for n = 0,...,5 modulo 6, using the following table:
n modulo 6 | 0 | 1 | 2 | 3 | 4 | 5 |
last letter of q[n-1] | 1 | 0 | 0 | 0 | 1 | 1 |
first letter of q[n-2]* | 1 | 1 | 0 | 1 | 1 | 0 |
Here q[n-2]* denotes either q[n-2] (if n == 2 (mod 3)), or bar{q[n-2]} (if n == 0,1 (mod 3)).
For example, where all equalities are modulo 2,
D(q[8]) = D(q[7]) 0 D(q[6]) = beta^6(2) f(6) 0 beta^5(2) f(5) = beta^6(2) beta^5(2) f(5) = beta^5(32) f(5) = beta^7(2) f(7),
where f(n):=(e(n) mod 2)^{-1}.
(End)
Extensions
Formula corrected and extended by Michel Dekking, May 03 2018
Comments