A171608 Triangle by columns, T(n,k); (..., n, (n+1)) preceded by (n-1) zeros, as an infinite lower triangular matrix.
1, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
First few rows of the triangle: 1; 2, 0; 0, 2, 0; 0, 3, 0, 0; 0, 0, 3, 0, 0; 0, 0, 4, 0, 0, 0; 0, 0, 0, 4, 0, 0, 0; 0, 0, 0, 5, 0, 0, 0, 0; 0, 0, 0, 0, 5, 0, 0, 0, 0; 0, 0, 0, 0, 6, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0; ...
Links
- Micah Manary, Table of n, a(n) for n = 1..5050
Programs
-
Maple
A171609 := proc(n,k) if k = ceil(n/2) then floor( (n+2)/2) ; else 0; end if; end proc: seq(seq( A171609(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 23 2021
Formula
Triangle by columns, T(n,k); (..., n, (n+1)) preceded by (n-1) zeros, as an infinite lower triangular matrix.
Extensions
More terms from Micah Manary, Aug 07 2022
Comments