A171617 a(n)=k is the smallest exponent of N=2^k of first prime(1)=2 where at least 5 equal decimal digits "n n n n n" appear in the decimal representation of N (n=0,1,...9).
1491, 485, 314, 221, 315, 973, 220, 317, 316, 422
Offset: 0
Examples
0: 2^1491: 449 decimal digits, "00000" appears on decimals 397 - 401. 1: 2^485: 146 decimal digits, "11111" appears on decimals 22 - 26. 2: 2^314: 95 decimal digits, "22222" appears on decimals 64 - 68. 3: 2^221: 67 decimal digits, "33333" appears on decimals 7 - 11. 4: 2^315: 95 decimal digits, "44444" appears on decimals 64 - 68. 5: 2^973: 293 decimal digits, "555555" (6 "5's") appears on decimals 230 - 25. 6: 2^220: 67 decimal digits, "66666" appears on decimals 7 - 11. 7: 2^317: 96 decimal digits, "77777" appears on decimals 65 - 69. 8: 2^316: 96 decimal digits, "88888" appears on decimals 65 - 69. 9: 2^422: 128 decimal digits, "99999" appears on decimals 83 - 87.
References
- E. J. Burr, American Mathematical Monthly (December 1963, 70(10), pp. 1101-2
- Julian Havil, Impossible?: Surprising Solutions to Counterintuitive Conundrums, Princeton University Press 2008
- Ross Honsberger, Ingenuity in mathematics, Random House/Singer School Division 1970
Programs
-
Mathematica
f[n_] := Block[{k = 1, m = IntegerString[n]}, mm = m <> m <> m <> m <> m; While[ StringPosition[ ToString[2^k], mm] == {}, k++]; k]; Array[f, 10, 0] (* Robert G. Wilson v, Oct 13 2012 *)
Comments