A171641 Non-deficient numbers with even sigma which are not Zumkeller.
738, 748, 774, 846, 954, 1062, 1098, 1206, 1278, 1314, 1422, 1494, 1602, 1746, 1818, 1854, 1926, 1962, 2034, 2286, 2358, 2466, 2502, 2682, 2718, 2826, 2934, 3006, 3114, 3222, 3258, 3438, 3474, 3492, 3546, 3582, 3636, 3708, 3798, 3852, 3924, 4014, 4068, 4086
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Chai Wah Wu)
- Peter Luschny, Zumkeller Numbers.
Crossrefs
Programs
-
Maple
with(NumberTheory): isA171641 := proc(n) local s, p, i, P; s := SumOfDivisors(n); if s::odd or s < n*2 then false else P := mul(1 + x^i, i in Divisors(n)); 0 = coeff(P, x, s/2) fi end: select(isA171641, [seq(1..4100)]); # Peter Luschny, Oct 19 2024
-
Mathematica
Reap[For[n = 2, n <= 4000, n = n+2, sigma = DivisorSigma[1, n]; If[sigma >= 2n && EvenQ[sigma] && Coefficient[ Times @@ (1 + x^Divisors[n]) // Expand, x, sigma/2] == 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 26 2013 *)
-
Python
from sympy import divisors import numpy as np A171641 = [] for n in range(2,10**6): d = divisors(n) s = sum(d) if not s % 2 and 2*n <= s: d.remove(n) s2, ld = int(s/2-n), len(d) z = np.zeros((ld+1,s2+1),dtype=int) for i in range(1,ld+1): y = min(d[i-1],s2+1) z[i,range(y)] = z[i-1,range(y)] z[i,range(y,s2+1)] = np.maximum(z[i-1,range(y,s2+1)],z[i-1,range(0,s2+1-y)]+y) if z[ld,s2] != s2: A171641.append(n) # Chai Wah Wu, Aug 19 2014
Comments