cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A337738 Terms of A171641 with a record number of divisors.

Original entry on oeis.org

738, 3492, 14184, 58896, 236448, 954432, 2549700, 10884600, 44989200
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2020

Keywords

Comments

Non-deficient numbers (A023196) with an even sum of divisors (A000203) which cannot be partitioned into two disjoint sets with equal sum, and having a record number of divisors.
The corresponding numbers of divisors are 12, 18, 24, 30, 36, 42, 54, 72, 90, ...

Examples

			The number of divisors of each of the first 33 terms of A171641 is 12. A171641(34) = 3492 has 18 divisors, and it is the first term with more than 12 divisors. Therefore, a(2) = 3492.
		

Crossrefs

Programs

  • Mathematica
    nonZumQ[n_] := Module[{d = Divisors[n], sum, x}, sum = Plus @@ d; sum >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 0]; dm = 0; s = {}; Do[d = DivisorSigma[0, n]; If[d > dm, q = nonZumQ[n]; If[q && d > dm, dm = d; AppendTo[s, n]]], {n, 1, 60000}]; s

Extensions

a(8)-a(9) from Amiram Eldar, Apr 04 2023

A083207 Zumkeller or integer-perfect numbers: numbers n whose divisors can be partitioned into two disjoint sets with equal sum.

Original entry on oeis.org

6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

The 229026 Zumkeller numbers less than 10^6 have a maximum difference of 12. This leads to the conjecture that any 12 consecutive numbers include at least one Zumkeller number. There are 1989 odd Zumkeller numbers less than 10^6; they are exactly the odd abundant numbers that have even abundance, A174865. - T. D. Noe, Mar 31 2010
For k >= 0, numbers of the form 18k + 6 and 18k + 12 are terms (see Remark 2.3. in Somu et al., 2023). Corollary: The maximum difference between any two consecutive terms is at most 12. - Ivan N. Ianakiev, Jan 02 2024
All 205283 odd abundant numbers less than 10^8 that have even abundance (see A174865) are Zumkeller numbers. - T. D. Noe, Nov 14 2010
Except for 1 and 2, all primorials (A002110) are Zumkeller numbers (follows from Fact 6 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 23 2016
Supersequence of A111592 (follows from Fact 3 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 20 2017
Conjecture: Any 4 consecutive terms include at least one number k such that sigma(k)/2 is also a Zumkeller number (verified for the first 10^5 Zumkeller numbers). - Ivan N. Ianakiev, Apr 03 2017
LeVan studied these numbers using the equivalent definition of numbers n such that n = Sum_{d|n, dA180332) "minimal integer-perfect numbers". - Amiram Eldar, Dec 20 2018
The numbers 3 * 2^k for k > 0 are all Zumkeller numbers: half of one such partition is {3*2^k, 3*2^(k-2), ...}, replacing 3 with 2 if it appears. With this and the lemma that the product of a Zumkeller number and a number coprime to it is again a Zumkeller number (see A179527), we have that all numbers divisible by 6 but not 9 (or numbers congruent to 6 or 12 modulo 18) are Zumkeller numbers, proving that the difference between consecutive Zumkeller numbers is at most 12. - Charlie Neder, Jan 15 2019
Improvements on the previous comment: 1) For every integer q > 0, every odd integer r > 0 and every integer s > 0 relatively prime to 6, the integer 2^q*3^r*s is a Zumkeller number, and therefore 2) there exist Zumkeller numbers divisible by 9 (such as 54, 90, 108, 126, etc.). - Ivan N. Ianakiev, Jan 16 2020
Conjecture: If d > 1, d|k and tau(d)*sigma(d) = k, then k is a Zumkeller number (cf. A331668). - Ivan N. Ianakiev, Apr 24 2020
This sequence contains A378541, the intersection of the practical numbers (A005153) with numbers with even sum of divisors (A028983). - David A. Corneth, Nov 03 2024
Sequence gives the positions of even terms in A119347, and correspondingly, of odd terms in A308605. - Antti Karttunen, Nov 29 2024
If s = sigma(m) is odd and p > s then m*p is not in the sequence. - David A. Corneth, Dec 07 2024

Examples

			Given n = 48, we can partition the divisors thus: 1 + 3 + 4 + 6 + 8 + 16 + 24 = 2 + 12 + 48, therefore 48 is a term (A083206(48) = 5).
From _David A. Corneth_, Dec 04 2024: (Start)
30 is in the sequence. sigma(30) = 72. So we look for distinct divisors of 30 that sum to 72/2 = 36. That set or its complement contains 30. The other divisors in that set containing 30 sum to 36 - 30 = 6. So we look for some distinct proper divisors of 30 that sum to 6. That is from the divisors of {1, 2, 3, 5, 6, 10, 15}. It turns out that both 1+2+3 and 6 satisfy this condition. So 36 is in the sequence.
25 is not in the sequence as sigma(25) = 31 which is odd so the sum of two equal integers cannot be the sum of divisors of 25.
33 is not in the sequence as sigma(33) = 48 < 2*33. So is impossible to have a partition of the set of divisors into two disjoint set the sum of each of them sums to 48/2 = 24 as one of them contains 33 > 24 and any other divisors are nonnegative. (End)
		

References

  • Marijo O. LeVan, Integer-perfect numbers, Journal of Natural Sciences and Mathematics, Vol. 27, No. 2 (1987), pp. 33-50.
  • Marijo O. LeVan, On the order of nu(n), Journal of Natural Sciences and Mathematics, Vol. 28, No. 1 (1988), pp. 165-173.
  • J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 1.10, pp. 53-54.

Crossrefs

Positions of nonzero terms in A083206, positions of 0's in A103977 and in A378600.
Positions of even terms in A119347, of odd terms in A308605.
Complement of A083210.
Subsequence of A023196 and of A028983.
Union of A353061 and A378541.
Conjectured subsequences: A007691, A331668 (after their initial 1's), A351548 (apart from 0-terms).
Cf. A174865 (Odd abundant numbers whose abundance is even).
Cf. A204830, A204831 (equal sums of 3 or 4 disjoint subsets).
Cf. A000203, A005101, A005153 (practical numbers), A005835, A027750, A048055, A083206, A083208, A083211, A171641, A175592, A179527 (characteristic function), A221054.

Programs

  • Haskell
    a083207 n = a083207_list !! (n-1)
    a083207_list = filter (z 0 0 . a027750_row) $ [1..] where
       z u v []     = u == v
       z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
    -- Reinhard Zumkeller, Apr 18 2013
    
  • Maple
    with(numtheory): with(combstruct):
    is_A083207 := proc(n) local S, R, Found, Comb, a, s; s := sigma(n);
    if not(modp(s, 2) = 0 and n * 2 <= s) then return false fi;
    S := s / 2 - n; R := select(m -> m <= S, divisors(n)); Found := false;
    Comb := iterstructs(Combination(R)):
    while not finished(Comb) and not Found do
       Found := add(a, a = nextstruct(Comb)) = S
    od; Found end:
    A083207_list := upto -> select(is_A083207, [$1..upto]):
    A083207_list(272); # Peter Luschny, Dec 14 2009, updated Aug 15 2014
  • Mathematica
    ZumkellerQ[n_] := Module[{d=Divisors[n], t, ds, x}, ds = Plus@@d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[1000], ZumkellerQ] (* T. D. Noe, Mar 31 2010 *)
    znQ[n_]:=Length[Select[{#,Complement[Divisors[n],#]}&/@Most[Rest[ Subsets[ Divisors[ n]]]],Total[#[[1]]]==Total[#[[2]]]&]]>0; Select[Range[300],znQ] (* Harvey P. Dale, Dec 26 2022 *)
  • PARI
    part(n,v)=if(n<1, return(n==0)); forstep(i=#v,2,-1,if(part(n-v[i],v[1..i-1]), return(1))); n==v[1]
    is(n)=my(d=divisors(n),s=sum(i=1,#d,d[i])); s%2==0 && part(s/2-n,d[1..#d-1]) \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    \\ See Corneth link
    
  • Python
    from sympy import divisors
    from sympy.combinatorics.subsets import Subset
    for n in range(1,10**3):
        d = divisors(n)
        s = sum(d)
        if not s % 2 and max(d) <= s/2:
            for x in range(1,2**len(d)):
                if sum(Subset.unrank_binary(x,d).subset) == s/2:
                    print(n,end=', ')
                    break
    # Chai Wah Wu, Aug 13 2014
    
  • Python
    from sympy import divisors
    import numpy as np
    A083207 = []
    for n in range(2,10**3):
        d = divisors(n)
        s = sum(d)
        if not s % 2 and 2*n <= s:
            d.remove(n)
            s2, ld = int(s/2-n), len(d)
            z = np.zeros((ld+1,s2+1),dtype=int)
            for i in range(1,ld+1):
                y = min(d[i-1],s2+1)
                z[i,range(y)] = z[i-1,range(y)]
                z[i,range(y,s2+1)] = np.maximum(z[i-1,range(y,s2+1)],z[i-1,range(0,s2+1-y)]+y)
                if z[i,s2] == s2:
                    A083207.append(n)
                    break
    # Chai Wah Wu, Aug 19 2014
    
  • Sage
    def is_Zumkeller(n):
        s = sigma(n)
        if not (2.divides(s) and n*2 <= s): return False
        S = s // 2 - n
        R = (m for m in divisors(n) if m <= S)
        return any(sum(c) == S for c in Combinations(R))
    A083207_list = lambda lim: [n for n in (1..lim) if is_Zumkeller(n)]
    print(A083207_list(272)) # Peter Luschny, Sep 03 2018

Formula

A083206(a(n)) > 0.
A083208(n) = A083206(a(n)).
A179529(a(n)) = 1. - Reinhard Zumkeller, Jul 19 2010

Extensions

Name improved by T. D. Noe, Mar 31 2010
Name "Zumkeller numbers" added by N. J. A. Sloane, Jul 08 2010

A156903 Abundant numbers (A005101) whose abundance is odd.

Original entry on oeis.org

18, 36, 72, 100, 144, 162, 196, 200, 288, 324, 392, 400, 450, 576, 648, 784, 800, 882, 900, 968, 1152, 1296, 1352, 1458, 1568, 1600, 1764, 1800, 1936, 2178, 2304, 2450, 2500, 2592, 2704, 2916, 3042, 3136, 3200, 3528, 3600, 3872, 4050, 4356, 4608, 4624
Offset: 1

Views

Author

Robert G. Wilson v, Feb 17 2009

Keywords

Comments

Equivalently, abundant numbers with odd sum of divisors.
Complement of A204825 with respect to A005101 (abundant numbers).
Seems to be a proper subset of A083211. - Robert G. Wilson v, Mar 30 2010. This sequence is indeed a proper subset of A083211, since the abundance of a number k, A033880(k) = sigma(k) - 2*k, has the same parity as sigma(k). If sigma(k) is odd then the sums of any two complementary subsets of the divisors of k have different parities and thus they cannot be equal. - Amiram Eldar, Jun 20 2020
If n is present, so is 2*n. - Robert G. Wilson v, Jun 21 2015
If n is in the sequence, so is 100*n (conjectured). - Sergey Pavlov, Mar 22 2017. Pavlov's observation trivially follows from the fact that to have odd abundance a number k must be either a square or twice a square. If such a number k is abundant then 100*k = (10^2) * k is abundant as well and has odd abundance. In general, we can say that if k is present, so are t^2*k and 2*t^2*k, for every t>0. - Giovanni Resta, Oct 16 2018
Terms are congruent to {0, 2, 4, 8, 9, 14, 16, 18, 20, 26, 28, 32} (mod 36). - Robert G. Wilson v, Dec 09 2018

Examples

			k = 18 is in the sequence because its divisors are {1,2,3,6,9,18} which sum to sigma(k) = 39; so its abundance is sigma(k) - 2k = 39 - 36 = 3.
		

Crossrefs

Intersection of A005101 and A028982. - Amiram Eldar, Jun 20 2020
A proper subset of A083211. Setwise difference A083211 \ A171641.
Positions of odd negative terms in A378600.
Cf. A204825 (abundant numbers with even sum of divisors), A204826 (deficient numbers with odd sum of divisors), A204827 (deficient numbers with even sum of divisors).

Programs

  • GAP
    Filtered([1..5000],k->Sigma(k)-2*k>0 and (Sigma(k)-2*k) mod 2=1); # Muniru A Asiru, Dec 11 2018
  • Maple
    with(numtheory): select(k->sigma(k)>2*k and modp(sigma(k)-2*k,2)=1,[$1..5000]); # Muniru A Asiru, Dec 11 2018
  • Mathematica
    abundance[n_] := DivisorSigma[1, n] - 2 n; Select[Range[1000], abundance[#] > 0 && Mod[abundance[#], 2] == 1 &]
    abundOddAbundQ[n_] := If[MemberQ[{0, 2, 4, 8, 9, 14, 16, 18, 20, 26, 28, 32}, Mod[n, 36]], a = DivisorSigma[1, n]; OddQ@a && a > 2 n]; Select[ Range@ 5000, abundOddAbundQ@# &] (* Robert G. Wilson v, Dec 23 2018 *)
  • PARI
    is(n)=my(k=sigma(n)-2*n); k>0 && k%2 \\ Charles R Greathouse IV, Feb 21 2017
    
  • Python
    from sympy.ntheory import divisor_sigma
    def a(n):
        return divisor_sigma(n) - 2*n
    [n for n in range(18, 5001) if a(n) > 0 and a(n) % 2] # Indranil Ghosh, Mar 22 2017
    

Extensions

Name edited by Michel Marcus and Charles R Greathouse IV, Mar 26 2017
Edited by N. J. A. Sloane, Jun 21 2020 at the suggestion of Amiram Eldar

A083211 Abundant numbers (A005101) with no subset of their divisors such that the complement has the same sum.

Original entry on oeis.org

18, 36, 72, 100, 144, 162, 196, 200, 288, 324, 392, 400, 450, 576, 648, 738, 748, 774, 784, 800, 846, 882, 900, 954, 968, 1062, 1098, 1152, 1206, 1278, 1296, 1314, 1352, 1422, 1458, 1494, 1568, 1600, 1602, 1746, 1764, 1800, 1818, 1854, 1926, 1936, 1962, 2034, 2178, 2286, 2304, 2358, 2450, 2466, 2500, 2502, 2592, 2682, 2704, 2718, 2826, 2916, 2934, 3006, 3042
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

A083206(a(n)) = 0; subsequence of A083210.
All [abundant] numbers with an odd sum of divisors (either a square or twice a square, A028982) must be terms because for these numbers the two subsets will be of opposite parity. - Robert G. Wilson v, Apr 01 2010, clarified by Antti Karttunen, Dec 05 2024

Examples

			Divisors of n=18: {1,2,3,6,9,18}; 18 is pseudo-perfect (A005835): 18=9+6+3, but there exist no two complementary subsets of divisors having the same sum, therefore 18 is a term.
		

Crossrefs

Intersection of A005101 and A083210.
Disjoint union of A156903 and A171641. - Amiram Eldar, Jun 20 2020
Positions of negative terms in A378600.
Cf. A000203, A028982, A083206, A156942 (odd terms), A378661 (characteristic function).

Programs

  • Mathematica
    fQ[n_] := Block[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[3042], And[DivisorSigma[1, #] > 2 #, ! fQ[#]] &] (* Michael De Vlieger, Dec 04 2024, after T. D. Noe at A083207 *)
  • PARI
    A083206(n) = { my(s=sigma(n),p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); (polcoeff(p, 0)/2)); };
    is_A083211(n) = ((sigma(n)>2*n) && (0==A083206(n))); \\ Antti Karttunen, Dec 04 2024

Formula

{k such that sigma(k) > 2*k and A083206(k) = 0}. - Antti Karttunen, Dec 04 2024

Extensions

a(21)-a(46) from Robert G. Wilson v, Apr 01 2010
Many missing terms inserted, first ones at a(29) = 1206 and a(30) = 1278 - Antti Karttunen, Dec 04 2024

A378600 Signed variant of Zumkeller deficiency: a(n) = signum(A033879(n)) * A103977(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, 0, 12, 4, 6, 1, 16, -1, 18, 0, 10, 8, 22, 0, 19, 10, 14, 0, 28, 0, 30, 1, 18, 14, 22, -1, 36, 16, 22, 0, 40, 0, 42, 4, 12, 20, 46, 0, 41, 7, 30, 6, 52, 0, 38, 0, 34, 26, 58, 0, 60, 28, 22, 1, 46, 0, 66, 10, 42, 0, 70, -1, 72, 34, 26, 12, 58, 0, 78, 0, 41, 38, 82, 0, 62, 40, 54, 0, 88, 0, 70
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2024

Keywords

Comments

If n is abundant, then negate the value of A103977(n), otherwise use as it is.

Crossrefs

Cf. A005100 (positions of terms > 0), A083207 (positions of 0's), A083211 (positions of negative terms), A156903 (positions of odd negative terms), A171641 (of even negative terms).

Programs

  • PARI
    A033879(n) = (n+n-sigma(n));
    nonzerocoefpositions(p) = { my(v=Vec(p), lista=List([])); for(i=1,#v,if(v[i], listput(lista,i))); Vec(lista); };
    A103977(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); my(plist=nonzerocoefpositions(p), m = #plist, d); if(!(m%2), plist[1+(m/2)]-plist[m/2], d = plist[(m+1)/2]-plist[(m-1)/2]; if(1==d,0,d)); };
    A378600(n) = { my(d=A033879(n)); if(d>=0, d, -A103977(n)); };

Formula

If A033879(n) >= 0, a(n) = A033879(n), otherwise a(n) = -A103977(n).

A323342 Numbers k whose bi-unitary divisors have an even sum which is larger than 2k, but they cannot be partitioned into two disjoint parts whose sums are equal.

Original entry on oeis.org

704, 1458, 2394, 7544, 10184, 46400, 60416, 106434, 115182, 118098, 121014, 125000, 129762, 141426, 147258, 150174, 156006, 158922, 164754, 176418, 185166, 190998, 199746, 202662, 217242, 220158, 228906, 237654, 243486, 246402, 252234, 260982, 263898, 278478
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The bi-unitary version of A171641.

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdiv[n_] := Select[Divisors[n], Last@Intersection[f@#, f[n/#]] == 1 &]; fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[n_] := If[n==1, 1, Times @@ (fun @@@ FactorInteger[n])]; seq={}; Do[s=bsigma[n]; If[OddQ[s] || s<=2n, Continue[]]; div = bdiv[n]; If[Coefficient[Times @@ (1 + x^div) // Expand, x, s/2] == 0, AppendTo[seq, n]], {n, 1, 10000}]; seq

A323343 Numbers k whose exponential divisors have an even sum which is larger than 2k, but they cannot be partitioned into two disjoint parts whose sums are equal.

Original entry on oeis.org

1910412, 9552060, 21014532, 24835356, 32477004, 43939476, 55401948, 59222772, 70685244, 78326892, 82147716, 89789364, 101251836, 105072660, 112714308, 116535132, 124176780, 127997604, 135639252, 139460076, 150922548, 158564196, 162385020, 170026668, 185309964
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The exponential version of A171641.

Crossrefs

Programs

  • Mathematica
    dQ[n_, m_] := (n>0&&m>0 &&Divisible[n, m]); expDivQ[n_, d_] := Module[ {ft = FactorInteger[n]}, And@@MapThread[dQ, {ft[[;; , 2]], IntegerExponent[ d, ft[[;; , 1]]]} ]]; ediv[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[ Last[#]]}] &) /@ FactorInteger[n]; seq={}; Do[s=esigma[n]; If[OddQ[s] || s<=2n, Continue[]]; div = ediv[n]; If[Coefficient[Times @@ (1 + x^div) // Expand, x, s/2] == 0, AppendTo[seq, n]], {n, 1, 10000}]; seq

A323344 Numbers k whose infinitary divisors have an even sum which is larger than 2k, but they cannot be partitioned into two disjoint parts whose sums are equal.

Original entry on oeis.org

2394, 7544, 10184, 1452330, 2154584, 5021912, 5747994, 5771934, 5786298, 5800662, 5834178, 5843754, 5858118, 5886846, 5905998, 5920362, 5929938, 5992182, 6035274, 6059214, 6078366, 6087942, 6102306, 6107094, 6121458, 6174126, 6202854, 6207642, 6245946, 6265098
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The infinitary version of A171641.

Crossrefs

Programs

  • Mathematica
    infdivs[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[n_] := If[n == 1, 1, Times @@ (fun @@@ FactorInteger[n])]; seq={}; Do[s=isigma[n]; If[OddQ[s] || s<=2n, Continue[]]; div = infdivs[n]; If[Coefficient[Times @@ (1 + x^div) // Expand, x, s/2] == 0, AppendTo[seq, n]], {n, 1, 100000}]; seq (* after Michael De Vlieger at A077609 *)

A376880 Numbers that have Zumkeller divisors.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270
Offset: 1

Views

Author

Peter Luschny, Oct 20 2024

Keywords

Comments

d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207).
The first difference from A023196 is 748, which is abundant (sigma(748) = 1512 > 2*748) but has no Zumkeller divisors.

Examples

			The Zumkeller divisors of 80 are {20, 40, 80}, so 80 is a term.
The divisors of 81 are {1, 3, 9, 27, 81}, none of which is Zumkeller, so 81 is not a term.
		

Crossrefs

Positions of terms > 1 in A376882, terms > 0 in A378446.

Programs

  • Maple
    with(NumberTheory):
    isZumkeller := proc(n) option remember; local s, p, i, P;
        s := SumOfDivisors(n);
        if s::odd or s < n*2 then false else
        P := mul(1 + x^i, i in Divisors(n));
        is(0 < coeff(P, x, s/2)) fi end:
    select(n -> ormap(isZumkeller, Divisors(n)), [seq(1..270)]);
  • Mathematica
    znQ[n_]:=Length[Select[{#, Complement[Divisors[n], #]}&/@Most[Rest[ Subsets[ Divisors[ n]]]], Total[#[[1]]]==Total[#[[2]]]&]]>0; zn=Select[Range[300], znQ] (* zn from A083207 *) ;Select[Range[270],IntersectingQ[Divisors[#],zn]&] (* James C. McMahon, Oct 23 2024 *)

Extensions

Incorrect comment removed by Peter Luschny, Dec 02 2024

A323341 Numbers k whose unitary divisors have an even sum which is larger than 2k, but they cannot be partitioned into two disjoint parts whose sums are equal.

Original entry on oeis.org

2394, 1452330, 5771934, 5786298, 5800662, 5834178, 5843754, 5858118, 5886846, 5905998, 5920362, 5929938, 5992182, 6035274, 6059214, 6078366, 6087942, 6102306, 6107094, 6121458, 6174126, 6202854, 6207642, 6245946, 6265098, 6274674, 6303402, 6336918, 6360858
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Crossrefs

The unitary version of A171641.

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; seq={}; Do[s=usigma[n]; If[OddQ[s] || s<=2n, Continue[]]; udiv = Select[Divisors[n], GCD[ #, n/# ] == 1 &]; If[Coefficient[Times @@ (1 + x^udiv) // Expand, x, s/2] == 0, AppendTo[seq, n]], {n, 1, 1500000}]; seq
Showing 1-10 of 16 results. Next