cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 143 results. Next

A179527 Characteristic function of Zumkeller numbers (A083207).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2010

Keywords

Crossrefs

Programs

  • Mathematica
    ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]];
    a[n_] := Boole[ZumkellerQ[n]];
    Array[a, 105] (* Jean-François Alcover, Apr 30 2017, after T. D. Noe *)

Formula

a(n) = A179528(n+1) - A179528(n).
a(A083207(n)) = 1; a(A083210(n)) = 0.
a(n) = A057427(A083206(n)).
Let n such that a(n)=1 and m coprime to n, then a(m*n)=1, this was proved by R. Gerbicz (lemma for proving A179529(n)>0).

A179529 Number of terms of A083207 in 12 consecutive numbers.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2010

Keywords

Comments

a(n) = SUM(A179527(k): n <= k < n+12);
F. Buss and T. D. Noe conjectured a(n) > 0; this is correct (proof by R. Gerbicz);
a(n+1) = A179528(n+12) - A179528(n);
a(A179530(n)) = n and a(m) <> n for m < A179530(n).

Programs

  • Mathematica
    ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]];
    a[n_] := Sum[Boole[ZumkellerQ[k]], {k, n, n + 11}];
    Array[a, 105] (* Jean-François Alcover, Apr 30 2017, after T. D. Noe *)

A179528 Number of terms of A083207 that are not greater than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2010

Keywords

Comments

Partial sums of A179527: a(n) = SUM(A179527(k): 1<=k<=n);
A179529(n+1) = a(n+12) - a(n).

Examples

			a(100)=#{6,12,20,24,28,30,40,42,48,54,56,60,66,70,78,80,84,88,90,96}=20;
a(1000000)=229026, by _T. D. Noe_.
		

Programs

  • Mathematica
    ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]];
    b[n_] := Boole[ZumkellerQ[n]];
    Array[b, 100] // Accumulate (* Jean-François Alcover, Apr 30 2017, after T. D. Noe *)

A328327 Numbers k such that both k and k+1 are Zumkeller numbers (A083207).

Original entry on oeis.org

5984, 7424, 21735, 21944, 26144, 27404, 39375, 43064, 49664, 56924, 58695, 61424, 69615, 70784, 76544, 77175, 79695, 81080, 81675, 82004, 84524, 84644, 89775, 91664, 98175, 103455, 104895, 106784, 109395, 111824, 116655, 116864, 120015, 121904, 122264, 126224
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2019

Keywords

Comments

Terms k such that both k and k+1 are primitive Zumkeller numbers (A180332) are 82004, 84524, 158235, 516704, 2921535, 5801984, ... (A361934).
There are infinitely many such k as proven by Somu et al. (2023). - Duc Van Khanh Tran, Dec 07 2023

Crossrefs

Subsequence of A096399.

Programs

  • Mathematica
    zumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; zq1 = False; s = {}; Do[zq2 = zumkellerQ[n]; If[zq1 && zq2, AppendTo[s, n - 1]]; zq1 = zq2, {n, 2, 10^5}]; s (* after T. D. Noe at A083207 *)
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A328327_gen(startvalue=1): # generator of terms >= startvalue
        m = -1
        for n in count(max(startvalue,1)):
            d = divisors(n)
            s = sum(d)
            if s&1^1 and n<<1<=s:
                d = d[:-1]
                s2, ld = (s>>1)-n, len(d)
                z = [[0 for  in range(s2+1)] for  in range(ld+1)]
                for i in range(1, ld+1):
                    y = min(d[i-1], s2+1)
                    z[i][:y] = z[i-1][:y]
                    for j in range(y,s2+1):
                        z[i][j] = max(z[i-1][j],z[i-1][j-y]+y)
                    if z[i][s2] == s2:
                        if m == n-1:
                            yield m
                        m = n
                        break
    A328327_list = list(islice(A328327_gen(),5)) # Chai Wah Wu, Feb 13 2023

A353061 Zumkeller numbers (A083207) that are not practical numbers (A005153).

Original entry on oeis.org

70, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 350, 354, 366, 372, 402, 426, 438, 444, 474, 490, 492, 498, 516, 534, 550, 564, 572, 582, 606, 618, 636, 642, 650, 654, 678, 708, 732, 762, 770, 786, 804, 822, 834, 836, 852, 876, 894, 906, 910, 940, 942, 945, 948, 978, 996
Offset: 1

Views

Author

Jianing Song, Apr 20 2022

Keywords

Comments

Different from A007621: A007621 contains no odd numbers, while every odd term in A083207 is here. The numbers 738, 748, 774, 846, ... are in A007621 and are not here.
But the subsequence of even terms (A005843 intersect this sequence) is a subsequence of A007621:
- A005843 intersect this sequence = (A005843 intersect A083207) \ A005153;
- A083207 is a subsequence of A023196, and every perfect number is practical;
- So, (A005843 intersect A083207) \ A005153 is a subsequence of A173490, and A005153 is a supersequence of A007620.

Examples

			70 is a term since 70 is a Zumkeller number but not a practical number: 1+5+7+10+14+35 = 2+70, so 70 is a Zumkeller number; but 4 cannot be written as a sum of distinct divisors of 70, so 70 is not practical.
		

Crossrefs

Programs

A083208 a(n) = A083206(A083207(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 2, 2, 5, 2, 1, 17, 2, 1, 2, 3, 14, 1, 13, 11, 2, 1, 8, 2, 2, 140, 12, 8, 2, 7, 10, 5, 6, 97, 2, 1, 375, 2, 21, 8, 2, 1, 83, 85, 6, 2, 5, 2, 5, 1090, 2, 273, 2, 4, 58, 73, 1, 2, 59, 2, 4, 209, 1, 4, 4, 53, 2, 13, 56, 781, 4, 4, 2, 3, 3, 2, 11753, 4, 2, 1, 2, 58, 4, 43, 46, 169
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

A334166 Numbers k having a divisor d, such that d*k is a Zumkeller number (A083207).

Original entry on oeis.org

6, 10, 12, 14, 18, 20, 24, 28, 30, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98, 100, 102, 104, 105, 108, 110, 112, 114, 116, 120, 124, 126, 130, 132, 136, 138, 140, 144, 150, 152, 154, 156, 160, 162, 168, 170, 174, 176, 180, 182, 184, 186, 190
Offset: 1

Views

Author

Ivan N. Ianakiev, Apr 17 2020

Keywords

Comments

Conjecture: The difference between two consecutive terms is 6 at most.

Examples

			2 is a divisor of 10 and 10 is not a Zumkeller number, but 2*10 = 20 is a Zumkeller number, therefore 10 is in the sequence.
		

Crossrefs

Supersequence of A083207.

Programs

  • Mathematica
    zQ[n_]:=Module[{d=Divisors[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]]; fQ[n_]:=AnyTrue[n*Divisors[n],zQ];
    Select[Range[200],fQ] (* zQ defined by T. D. Noe at A083207 *)

A360561 a(n) is the least multiple of n that is a Zumkeller number (A083207).

Original entry on oeis.org

6, 6, 6, 12, 20, 6, 28, 24, 54, 20, 66, 12, 78, 28, 30, 48, 102, 54, 114, 20, 42, 66, 138, 24, 150, 78, 54, 28, 174, 30, 186, 96, 66, 102, 70, 108, 222, 114, 78, 40, 246, 42, 258, 88, 90, 138, 282, 48, 294, 150, 102, 104, 318, 54, 220, 56, 114, 174, 354, 60
Offset: 1

Views

Author

Rémy Sigrist, Feb 11 2023

Keywords

Comments

This sequence is well defined: as stated in Rao and Peng: 6 = 2*3 is a Zumkeller number, so, for any u, v >= 0, 2^(1+2*u) * 3^(1+2*v) is a Zumkeller number, also, if z is a Zumkeller number and m is coprime to z then z*m is also a Zumkeller number; if n = 2^u * 3^v * m with m coprime to 6, let u' be the least odd number >= u and v' be the least odd number >= v, then k = 2^(u'-u) * 3^(v'-v) is an integer (among {1, 2, 3, 6}), k*n is a Zumkeller number and a(n) <= k.

Crossrefs

Programs

  • PARI
    a(n) = { forstep (m=n, oo, n, if (is(m), return (m))) } \\ see A083207 for the function "is"

Formula

a(n) = A360562(n) * n.
a(n) = n iff n belongs to A083207.

A179530 Smallest of 12 consecutive numbers containing exactly n terms of A083207.

Original entry on oeis.org

7, 1, 17, 19, 489, 116859
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2010

Keywords

Comments

A179529(a(n)) = n and A179529(m) <> n for m < a(n);
SUM(A179527(k): a(n) <= k < a(n)+12) = n;
by definition the sequence is finite with at most 12 terms.

Examples

			a(3)=17: A179529(17) = #{20,24,28} = #{A083207(3),A083207(4),A083207(5)} = 3;
a(4)=19: A179529(19) = #{20,24,28,30} = #{A083207(3),A083207(4),A083207(5),A083207(6)} = 4;
a(5)=489: A179529(489) = #{490,492,496,498,500} = #{A083207(107),A083207(108),A083207(109),A083207(110),A083207(111)} = 5.
For a(6), the six Zumkeller numbers are 116860, 116862, 116864, 116865, 116868, and 116870. [From _T. D. Noe_, Aug 22 2010]
		

Crossrefs

Cf. A179528.

Extensions

a(6) from T. D. Noe, Aug 22 2010

A333232 Terms of A051488 that do not belong to A083207.

Original entry on oeis.org

5865, 7395, 10005, 15045, 28815, 37995, 45645, 50235, 99705, 134895, 170085, 275655, 310845, 347565, 391935, 436305, 470235, 486795, 521985, 530265, 590295, 613785, 627555, 635205, 658155, 662745, 707115, 791265, 797385, 830415, 835635, 873885, 887655, 979455, 994755
Offset: 1

Views

Author

Ivan N. Ianakiev, Mar 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    (* First 200000 terms of A051488 *)
    a051488=Select[Range[200000],EulerPhi[#]T. D. Noe at A083207 *)
    zQ[n_]:=Module[{d=Divisors[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]]; t2=Select[t1,!zQ[#]&]

Extensions

Terms a(12) and beyond from Giovanni Resta, Mar 12 2020
Showing 1-10 of 143 results. Next