cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179527 Characteristic function of Zumkeller numbers (A083207).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2010

Keywords

Crossrefs

Programs

  • Mathematica
    ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]];
    a[n_] := Boole[ZumkellerQ[n]];
    Array[a, 105] (* Jean-François Alcover, Apr 30 2017, after T. D. Noe *)

Formula

a(n) = A179528(n+1) - A179528(n).
a(A083207(n)) = 1; a(A083210(n)) = 0.
a(n) = A057427(A083206(n)).
Let n such that a(n)=1 and m coprime to n, then a(m*n)=1, this was proved by R. Gerbicz (lemma for proving A179529(n)>0).

A179529 Number of terms of A083207 in 12 consecutive numbers.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2010

Keywords

Comments

a(n) = SUM(A179527(k): n <= k < n+12);
F. Buss and T. D. Noe conjectured a(n) > 0; this is correct (proof by R. Gerbicz);
a(n+1) = A179528(n+12) - A179528(n);
a(A179530(n)) = n and a(m) <> n for m < A179530(n).

Programs

  • Mathematica
    ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]];
    a[n_] := Sum[Boole[ZumkellerQ[k]], {k, n, n + 11}];
    Array[a, 105] (* Jean-François Alcover, Apr 30 2017, after T. D. Noe *)

A179530 Smallest of 12 consecutive numbers containing exactly n terms of A083207.

Original entry on oeis.org

7, 1, 17, 19, 489, 116859
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2010

Keywords

Comments

A179529(a(n)) = n and A179529(m) <> n for m < a(n);
SUM(A179527(k): a(n) <= k < a(n)+12) = n;
by definition the sequence is finite with at most 12 terms.

Examples

			a(3)=17: A179529(17) = #{20,24,28} = #{A083207(3),A083207(4),A083207(5)} = 3;
a(4)=19: A179529(19) = #{20,24,28,30} = #{A083207(3),A083207(4),A083207(5),A083207(6)} = 4;
a(5)=489: A179529(489) = #{490,492,496,498,500} = #{A083207(107),A083207(108),A083207(109),A083207(110),A083207(111)} = 5.
For a(6), the six Zumkeller numbers are 116860, 116862, 116864, 116865, 116868, and 116870. [From _T. D. Noe_, Aug 22 2010]
		

Crossrefs

Cf. A179528.

Extensions

a(6) from T. D. Noe, Aug 22 2010
Showing 1-3 of 3 results.