cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171645 Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes, A000040, a(1) = 2.

Original entry on oeis.org

2, 4, 8, 12, 18, 30, 50, 70, 98, 154, 242, 286, 338, 442, 578, 646, 722, 874, 1058, 1334, 1682, 1798, 1922, 2294, 2738
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

Analogous formulas using A000041 terms = A171646; Fibonacci numbers, A006498; factorials, A010551.

Examples

			a(10) = 154 = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
		

Crossrefs

Programs

  • Mathematica
    FoldList[Times,Join[{2,2,2},Flatten[{#[[2]]/#[[1]],#[[2]]/#[[1]]}&/@Partition[Prime[Range[20]],2,1]]]] (* Harvey P. Dale, Oct 02 2024 *)

Formula

Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), =
2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes,
A000040, a(1) = 2.
a(n)=2*A057602(n-1). [From R. J. Mathar, Dec 15 2009]