cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171648 a(1) = 1, a(n) = 2*a(n-1) if n is even; a(n) = a(n-1)*Fibonacci((n+1)/2)/Fibonacci((n-1)/2) if n is odd.

Original entry on oeis.org

1, 2, 2, 4, 8, 16, 24, 48, 80, 160, 256, 512, 832, 1664, 2688, 5376, 8704, 17408, 28160, 56320, 91136, 182272, 294912, 589824, 954368, 1908736, 3088384, 6176768, 9994240, 19988480, 32342016, 64684032, 104660992, 209321984, 338690048, 677380096, 1096024064
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

a(n)/a(n-1) apparently tends to phi = A001622 if n=odd; e.g. a(21)/a(20) = 91136/56320 = 1.61818...
a(n)/a(n-2) apparently tends to 1+sqrt(5) = 3.236...= A134945; where a(21)/a(19) = 91136/28160 = 3.23636...
a(1)=1, a(2)=2, a(3)=2, for n>3 a(n)=2*a(n-1) if n is even and a(n)=2*(a(n-1)-a(n-2)+a(n-3)) if n is odd. - Vincenzo Librandi, Dec 06 2010

Examples

			a(8) = 48 = 2*a(7) = 2*24. a(9) = 80 = (5/3)*48 since Fibonacci(5) = 5 and Fibonacci(4) = 3.
		

Crossrefs

Cf. A063727 (bisection), A103435 (bisection).

Programs

  • PARI
    Vec(x*(1+2*x)/(1-2*x^2-4*x^4) + O(x^50)) \\ Colin Barker, Aug 02 2016

Formula

a(1) = 1, a(n) = 2*a(n-1) if n is even; a(n) = a(n-1)*A000045((n+1)/2)/A000045((n-1)/2) if n is odd.
From Colin Barker, Aug 02 2016: (Start)
a(n) = 2*a(n-2) + 4*a(n-4) for n>4.
G.f.: x*(1+2*x) / (1-2*x^2-4*x^4).
(End)

Extensions

Defined "F", removed abundant parentheses, added punctuation to examples, added a factor to the definition, corrected a(13) and added more terms - R. J. Mathar, Dec 15 2009