cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171727 The number of twin prime pairs in the interval (p^2,p*q), where (p,q) runs over the twin prime pairs (A001359(n),A006512(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 1, 3, 2, 2, 4, 7, 3, 3, 5, 7, 4, 4, 7, 6, 11, 9, 5, 11, 9, 9, 11, 10, 11, 9, 11, 11, 12, 11, 12, 18, 12, 12, 16, 11, 16, 20, 14, 16, 15, 20, 16, 22, 13, 22, 16, 17, 21, 20, 20, 23, 22, 23, 20, 21, 21, 26, 20, 28, 24, 24, 23, 24, 25, 21, 24, 37, 27, 21, 28, 24, 31
Offset: 1

Views

Author

Jaspal Singh Cheema, Dec 16 2009

Keywords

Comments

If you graph the order of the twin primes along the x-axis (i.e., first twin, second, third, ...) and the number of twins in the sequence given above along the y-axis, a clear pattern emerges. As you go farther along the x-axis, the number of twin primes, on average, within the interval increases. The pattern appears to be nonlinear. If one could prove that there's at least one twin prime within each interval, the twin prime conjecture would be proved since the n-th twin produces larger intervals with more twin primes. The evidence seems overwhelming.

Examples

			The first twin prime pair (3,5) corresponds to the interval (9,15), which contains one twin prime pair (11,13), so a(1) = 1.
The fifth twin prime pair (29,31) corresponds to the interval (841,899), which contains the twin prime pairs (857,859) and (881,883), so a(5) = 2.
		

References

  • C. C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Perseus Books, 1999.
  • J. Derbyshire, Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Penguin Books Canada Ltd., 2004.
  • M. du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics, HarperCollins Publishers Inc., 2004.

Crossrefs

Programs

  • PARI
    {for(k=1, 300, if(prime(k+1)-prime(k)==2, my(c=0); forprime(m=prime(k)^2, prime(k)*prime(k+1), c+=isprime(m+2)); print1(c, ", ")))} \\ Zhandos Mambetaliyev, Mar 28 2021

Extensions

Partially edited by Michel Marcus, Mar 19 2013
Edited by Charlie Neder, Feb 12 2019