A171728 Numbers k which establish records for floor(log(log(log(2^k)))).
2, 3, 4, 22, 2335, 762451795, 742762245454927736743542, 41133018324375596439235122590123953570787986963829981156569123587
Offset: 1
Examples
a(1) = 2 because log(log(log(2^2))) ~ -1.1189142050548055457 whose floor is -2. a(2) = 3 because log(log(log(2^3))) ~ -0.31183902548187902095 whose floor is -1.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..11
- Ben Morris, Improved mixing time bounds for the Thorp shuffle, arXiv:0912.2759 [math.PR], Dec 14, 2009.
Programs
-
Mathematica
a[n_] := Ceiling[Exp[Exp[n - 3] - Log@ Log@ 2]]; Array[a, 11] (* Robert G. Wilson v, Feb 05 2013 *)
-
PARI
a(n)=ceil(exp(exp(n-3))/log(2)) \\ Charles R Greathouse IV, Dec 20 2011
Formula
a(n) = Min(n such that floor(log(log(log(2^n)))) > floor(log(log(log(2^(n-1)))))).
a(n) = ceiling(exp(exp(n-3)-log(log(2)))). - R. J. Mathar, Mar 31 2010
Extensions
Two more terms from R. J. Mathar, Mar 31 2010
Comments