cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171738 Number of n-digit terms in A115853.

Original entry on oeis.org

0, 9, 9, 252, 819, 11754, 72585, 803448, 6978159, 73047510, 744922341, 8023947732, 88219609227, 993117723282, 11397388906305, 132852212160624, 1568346473860839, 18699577205645646, 224600363892164061, 2711096523623447820, 32815659723020049411, 397495008150096639114
Offset: 1

Views

Author

Zak Seidov, Dec 17 2009

Keywords

Crossrefs

Cf. A115853 (numbers where every present decimal digit occurs more than once).

Programs

  • Mathematica
    Table[9 Sum[k! Binomial[9, k] (-1)^i Binomial[n, i] StirlingS2[n - i, k - i + 1], {k, 0, 9}, {i, 0, Min[n, k + 1]}], {n, 21}] (* Matthew House, Sep 06 2020 *)

Formula

From Matthew House, Sep 13 2020: (Start)
a(n) = Sum_{k=0..9} k!*C(9,k)*(S_2(n,k) + k*S_2(n,k+1)) = 9*Sum_{k=0..9} k!*C(9,k)*S_2(n,k+1), where S_2(n,k) = A008299(n,k).
a(n) = 9*Sum_{k=0..10} (-1)^k*9!/(10-k)!*C(n,k)*(10-k)^(n-k) for n >= 10, where 0^0 = 1.
All terms from a(11) onward satisfy a linear recurrence with characteristic polynomial (1-x)^10*(2-x)^9*(3-x)^8*(4-x)^7*(5-x)^6*(6-x)^5*(7-x)^4*(8-x)^3*(9-x)^2*(10-x). (End)

Extensions

More terms from Matthew House, Sep 06 2020