A171785 Start with a(1) = 1; then a(n) = smallest number > a(n-1) such that a(n) divides concat(a(1), a(2), ..., a(n)).
1, 2, 3, 5, 10, 12, 15, 20, 25, 30, 39, 44, 50, 100, 101, 125, 150, 188, 200, 220, 230, 250, 272, 304, 320, 370, 376, 400, 500, 525, 600, 615, 625, 1000, 1250, 1487, 1500, 1590, 1696, 1750, 2000, 2245, 2500, 3000, 3090, 3125, 3800, 4000, 5000, 5725, 6122, 7025
Offset: 1
Examples
1: 1 divides 1 1,2: 2 divides 12 1,2,3: 3 divides 123 1,2,3,4: 4 does NOT divide 1234, so 1,2,3,5: 5 divides 1235 etc.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..584
Crossrefs
See A029455 for numbers that divide the concatenation of all numbers <= n.
Programs
-
Mathematica
f[s_List] := Block[{k = s[[ -1]] + 1, conc = FromDigits[Flatten@ IntegerDigits@s]}, While[ Mod[conc*10^Floor[ Log[10, k] + 1] + k, k] != 0, k++ ]; Append[s, k]]; Nest[f, {1}, 51] (* Robert G. Wilson v, Oct 14 2010 *) nxt[{a_,c_}]:=Module[{k=a+1},While[!Divisible[c*10^IntegerLength[k]+ k, k], k++];{k,c*10^IntegerLength[k]+k}]; Transpose[NestList[nxt,{1,1},60]][[1]] (* Harvey P. Dale, Mar 08 2015 *)
Extensions
More terms from Robert G. Wilson v, Oct 14 2010
Comments