A171805 G.f.: Series reversion of x/P(x)^3 where P(x) is the g.f. for Partition numbers (A000041).
1, 3, 18, 130, 1044, 8946, 80135, 741312, 7027515, 67911855, 666525630, 6625647054, 66570488901, 674964968175, 6897258376218, 70961851119848, 734455079297433, 7641851681095236, 79886815507105175, 838655487787502616, 8837797224686207976, 93454820274339167191
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 130*x^4 + 1044*x^5 + 8946*x^6 +... where Series_Reversion(A(x)) = x/P(x)^3 = x*eta(x)^3 and x*eta(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + 13*x^22 +...
Programs
-
Mathematica
InverseSeries[x QPochhammer[x]^3 + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *) (* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^3 == s, 1/s + 3*(s/r)^(1/3)*Derivative[0, 1][QPochhammer][s, s] == (3*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/10}, {s, 1/8}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[r*(-1 + s)*s^2*(Log[s]^2/(6*Pi*(r*(-4*s*ArcTanh[1 - 2*s] + Log[1 - s]*(2 + 3*(-1 + s)*Log[1 - s] + Log[s] - s*Log[s])) - (-1 + s)*(-3*r*QPolyGamma[0, 1, s]^2 + r*QPolyGamma[1, 1, s] + QPolyGamma[0, 1, s]*(r*(2 - 6*Log[1 - s] + Log[s]) + 6*(r/s)^(2/3)*s^2*Log[s]* Derivative[0, 1][QPochhammer][s, s]) + s*Log[s]*((r/s)^(1/3)*s*(6*(r/s)^(1/3) * Log[1 - s] * Derivative[0, 1][QPochhammer][s, s] - 4*s*Log[s] * Derivative[0, 1][QPochhammer][s, s]^2 + (r/s)^(1/3)*s*Log[s]* Derivative[0, 2][QPochhammer][s, s]) - 2*r*Derivative[0, 0, 1][ QPolyGamma][0, 1, s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
-
PARI
{a(n)=polcoeff(serreverse(x*eta(x+x*O(x^n))^3),n)}
Formula
G.f. A(x) satisfies:
(1) A(x) = x/Product_{n>=1} (1 - A(x)^n)^3 ;
(2) A(x) = x/Sum_{n>=0} (-1)^n*(2n+1)*A(x)^(n(n+1)/2).
G.f.: A(x) = Series_Reversion(x*eta(x)^3) where eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).
Self-convolution cube of A171804 (with offset).
a(n) ~ c * d^n / n^(3/2), where d = 11.34340769381039824727582112969136186... and c = 0.05972244738388663765328174469956... - Vaclav Kotesovec, Nov 11 2017
Extensions
More terms from Vladimir Reshetnikov, Nov 21 2016