A171842 Binomial transform of 1,0,1,0,2,0,4,0,8,0,16,...
1, 1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, 9801, 23661, 57122, 137904, 332929, 803761, 1940450, 4684660, 11309769, 27304197, 65918162, 159140520, 384199201, 927538921, 2239277042, 5406093004, 13051463049, 31509019101, 76069501250, 183648021600, 443365544449, 1070379110497
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- Michael D. Barrus, Weakly threshold graphs, arXiv preprint arXiv:1608.01358 [math.CO], 2016.
- Heinrich Niederhausen, Inverses of Motzkin and Schroeder Paths, arXiv:1105.3713 [math.CO], 2011.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Crossrefs
Cf. A001006.
Programs
-
Maple
read("transforms") : L := [1,seq(2^i,i=0..30)] ; AERATE(L,1) ; BINOMIAL(%) ; # R. J. Mathar, Sep 26 2011
-
Mathematica
LinearRecurrence[{3, -1, -1}, {1, 1, 2}, 50] (* Jean-François Alcover, Feb 25 2017 *)
-
PARI
Vec((1-2*x)/((1-x)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016
Formula
a(n) = A024537(n-1), n>0. - R. J. Mathar, Jan 28 2010
a(n) = 3*a(n-1)-a(n-2)-a(n-3). G.f.: (1-2*x)/((1-x)*(1-2*x-x^2)). - Colin Barker, Apr 01 2012
a(n) = (2+(1-sqrt(2))^n+(1+sqrt(2))^n)/4. - Colin Barker, Mar 16 2016
Comments