A271082 Triangle read by rows, the coefficients of the (3x+1)-polynomials.
1, -3, 3, 1, -30, 5, -15, 7, 1, 2, 4, 16, -1920, 9, 1, 4, 8, 16, 64, -7680, 11, 1, 2, 8, -960, 13, 1, -120, 15, 1, 2, 4, 8, -3840, 17, 1, 4, -480, 19, 1, 2, 16, 32, 128, -15360, 21, -63, 23, 1, 2, 4, -1920, 25, 1, 4, 8, 64, 128, 512, -61440
Offset: 1
Examples
Triangle begins: 1, -3, 3, 1, -30, 5, -15, 7, 1, 2, 4, 16, -1920, 9, 1, 4, 8, 16, 64, -7680, 11, 1, 2, 8, -960, 13, 1, -120, 15, 1, 2, 4, 8, -3840, 17, 1, 4, -480, 19, 1, 2, 16, 32, 128, -15360, 21, -63, 23, 1, 2, 4, -1920, 25, 1, 4, 8, 64, 128, 512, -61440, The corresponding polynomials are: +----+-----------------------------------------------------------+ | x | Polynomials f(z) including the factor (z - 3) | +----+-----------------------------------------------------------+ | 1 | z - 3 | | 3 | 3z^2 + z - 30 | | 5 | 5z - 15 | | 7 | 7z^5 + z^4 + 2z^3 + 4z^2 + 16^z - 1920 | | 9 | 9z^6 + z^5 + 4z^4 + 8z^3 + 16z^2 + 64z - 7680 | | 11 | 11z^4 + z^3 + 2z^2 + 8z - 960 | | 13 | 13z^2 + z -120 | | 15 | 15z^5 + z^4 + 2z^3 + 4z^2 + 8z - 3840 | | 17 | 17z^3 + z^2 + 4z - 480 | | 19 | 19z^6 + z^5 + 2z^4 + 16z^3 + 32z^2 + 128z - 15360 | | 21 | 21z - 63 | | 23 | 23z^4 + z^3 + 2z^2 + 4z - 1920 | +----+-----------------------------------------------------------+ +----+-----------------------------------------------------------+ | x | Polynomials f(z)/(z - 3) | +----+-----------------------------------------------------------+ | 1 | 1 | | 3 | 3z + 10 | | 5 | 5 | | 7 | 7z^4 + 22z^3 + 68z^2 + 208z +640 | | 9 | 9z^5 + 28z^4 + 88z^3 + 272z^2 + 832z + 2560 | | 11 | 11z^3 + 34z^2 + 104z + 320 | | 13 | 13z + 40 | | 15 | 15z^4 + 46z^3 + 140z^2 + 424z + 1280 | | 17 | 17z^2 + 52z + 160 | | 19 | 19z^5 + 58z^4 + 176z^3 + 544z^2 + 1664z + 5120 | | 21 | 21 | | 23 | 23z^3 + 70 z^2 + 212z + 640 | +----+-----------------------------------------------------------+
Links
- Michel Lagneau, Coefficients
Programs
-
Maple
for m from 1 by 2 to 27 do: T:=array(1..50,[0$50]):U:=array(1..50,[0$50]): n:=m:ii:=2:xx1:=2:pp1:=0:s:=0:U[1]:=n:U[2]:=1: for q from 1 to 100 while(xx1<>1)do: n1:=3*n+1: for p from 1 to 50 do: p1:=2^p:x1:=floor(n1/p1):x0:=irem(n1,p1): if x0=0 and xx1<> 1 then pp1:=p:xx1:=x1: else fi: od: T[ii]:=pp1:n1:=x1:n:=xx1:ii:=ii+1:od:s:=0: for j from 1 to ii-3 do: s:=s+T[j]:U[j+2]:=2^s: od: s:=s+T[ii-2]:s1:=2^s:s:=s+T[ii-1]: s2:=2^s:U[ii]:=s1-s2: W:=array(1..ii-1,[0$ii-1]): W[1]:=U[1]: for l from 2 to ii-1 do: W[l]:=U[l+1]: od: print(m): print(W): od:
Comments