A171920 Numbers n with at least one solution to n=x*y*z, x+y-z=1 with ordered triples (x,y,z), x,y,z>=1.
1, 4, 9, 12, 16, 24, 25, 36, 40, 45, 49, 60, 64, 72, 81, 84, 100, 105, 112, 121, 144, 160, 169, 180, 189, 196, 216, 220, 225, 240, 256, 264, 280, 289, 297, 300, 312, 324, 352, 360, 361, 364, 385, 396, 400, 420, 429, 432, 441, 480, 484, 504, 520, 529, 544, 576
Offset: 1
Keywords
Examples
n=1 allows a solution (x,y,z)=(1,1,1), and is in the sequence. n=4 allows solutions (x,y,z)=(1,2,2) and (2,1,2) and is in the sequence.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10603 . [From _Robert G. Wilson v_, Oct 25 2010]
Programs
-
Mathematica
fQ[n_] := Block[{c = 0, cong = {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57}, dvs = Divisors@ n, dvt, j = 1, k, lmt1, lmt2}, If[ MemberQ[ cong, Mod[n, 60]], lmtj = Length@ dvs + 1; While[j < lmtj, dvt = Divisors[ n/dvs[[j]]]; k = 1; lmtk = Length@ dvt + 1; While[k < lmtk, If[ dvs[[j]] + dvt[[k]] == n/(dvs[[j]]*dvt[[k]]) + 1, c++ ]; k++ ]; j++ ]]; c > 0]; Select[ Range@ 584, fQ] (* Robert G. Wilson v, Oct 25 2010 *)
-
PARI
is_A171920(n)={ my(L=sqrt(n),yz); fordiv(n,x, x>L & return; fordiv(yz=n/x,y, y>x & break; y*(x+y-1)==yz & return(1)))} \\ M. F. Hasler, Nov 07 2010
Extensions
More terms from Robert G. Wilson v, Oct 25 2010
Comments