cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171920 Numbers n with at least one solution to n=x*y*z, x+y-z=1 with ordered triples (x,y,z), x,y,z>=1.

Original entry on oeis.org

1, 4, 9, 12, 16, 24, 25, 36, 40, 45, 49, 60, 64, 72, 81, 84, 100, 105, 112, 121, 144, 160, 169, 180, 189, 196, 216, 220, 225, 240, 256, 264, 280, 289, 297, 300, 312, 324, 352, 360, 361, 364, 385, 396, 400, 420, 429, 432, 441, 480, 484, 504, 520, 529, 544, 576
Offset: 1

Views

Author

Georgi Guninski, Oct 23 2010

Keywords

Comments

Supersequence of A000290, i.e., all perfect squares are in the sequence.
Solutions (x,y) are integral points on the elliptic curve x*y*(x+y-1)=n. - Georgi Guninski, Oct 25 2010
From Robert G. Wilson v, Oct 25 2010: (Start)
a(n) != 2 (mod 3) nor {2, 3} (mod 4) nor 3 (mod 5). a(n) == {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57} (mod 60).
Terms which are congruent to {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57} (mod 60) and are not members of the sequence: 21, 37, 52, 57, 61, 69, 76, 85, 96, 97, 109, 117, 120, 124, 129, 132, 136, 141, 145, 156, 157, 165, 172, 177, 181, ..., .
Terms which are congruent to {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57} (mod 60), not prime and are not members of the sequence: 21, 52, 57, 69, 76, 85, 96, 117, 120, 124, 129, 132, 136, 141, 145, 156, 165, 172, 177, 184, 192, 201, ..., .
Nonsquare terms: 12, 24, 40, 45, 60, 72, 84, 105, 112, 160, 180, 189, 216, 220, 240, 264, 280, 297, 300, ..., .
The lesser of twin terms: 24, 360, 624, 840, 960, 1104, 1224, 2184, 2400, 2736, ..., .
Lesser term of a gap of n or 0 if impossible: 24, 0, 1, 12, 4, 0, 105, 16, 72, 0, 25, ..., . (End)
Number of terms less than or equal to 10^n: 1, 3, 17, 84, 423, 2123, 10603, 52144, 253257, ..., . - Robert G. Wilson v, Oct 30 2010

Examples

			n=1 allows a solution (x,y,z)=(1,1,1), and is in the sequence.
n=4 allows solutions (x,y,z)=(1,2,2) and (2,1,2) and is in the sequence.
		

Programs

  • Mathematica
    fQ[n_] := Block[{c = 0, cong = {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57}, dvs = Divisors@ n, dvt, j = 1, k, lmt1, lmt2}, If[ MemberQ[ cong, Mod[n, 60]], lmtj = Length@ dvs + 1; While[j < lmtj, dvt = Divisors[ n/dvs[[j]]]; k = 1; lmtk = Length@ dvt + 1; While[k < lmtk, If[ dvs[[j]] + dvt[[k]] == n/(dvs[[j]]*dvt[[k]]) + 1, c++ ]; k++ ]; j++ ]]; c > 0]; Select[ Range@ 584, fQ] (* Robert G. Wilson v, Oct 25 2010 *)
  • PARI
    is_A171920(n)={ my(L=sqrt(n),yz); fordiv(n,x, x>L & return; fordiv(yz=n/x,y, y>x & break; y*(x+y-1)==yz & return(1)))} \\ M. F. Hasler, Nov 07 2010

Extensions

More terms from Robert G. Wilson v, Oct 25 2010