A171972 Greatest integer k such that k/n^2 < sqrt(3).
0, 1, 6, 15, 27, 43, 62, 84, 110, 140, 173, 209, 249, 292, 339, 389, 443, 500, 561, 625, 692, 763, 838, 916, 997, 1082, 1170, 1262, 1357, 1456, 1558, 1664, 1773, 1886, 2002, 2121, 2244, 2371, 2501, 2634, 2771, 2911, 3055, 3202, 3353, 3507, 3665, 3826, 3990, 4158
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Tetrahedron
- Wikipedia, Tetrahedron
Programs
-
Haskell
a171972 = floor . (* sqrt 3) . fromInteger . a000290 -- Reinhard Zumkeller, Dec 15 2012
-
Mathematica
z = 120; r = Sqrt[3]; Table[Floor[r*n^2], {n, 0, z}]; (* A171972 *) Table[Ceiling[r*n^2], {n, 0, z}]; (* A293410 *) Table[Round[r*n^2], {n, 0, z}]; (* A070169. - Clark Kimberling, Oct 11 2017 *)
Comments