cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172011 a(n) = 12*A002605(n).

Original entry on oeis.org

0, 12, 24, 72, 192, 528, 1440, 3936, 10752, 29376, 80256, 219264, 599040, 1636608, 4471296, 12215808, 33374208, 91180032, 249108480, 680577024, 1859371008, 5079896064, 13878534144, 37916860416, 103590789120, 283015299072, 773212176384, 2112454950912
Offset: 0

Views

Author

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

Keywords

Comments

The case k=2 in a family of sequences a(n)=G(k,n), G(k,0)=0, G(k,1)=k*(k+4), G(k,n)=k*G(k,n-1)+k*G(k,n-2).
The Binet formula is G(k,n) = (c^n-b^n)*d where d=sqrt(k*(k+4)); c=(k+d)/2; b=(k-d)/2.
The generating functions are k*(k+4)*x/(1-k*x-k*x^2).
The case k=1 is A022088.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,2},{0,12},30] (* Harvey P. Dale, Mar 06 2023 *)

Formula

Binet formula: a(n) = 2*2^n*((-1+3^(1/2))^(-n)-(-1)^n*(1+3^(1/2))^(-n))*3^(1/2) .
G.f.: 12*x/(1-2*x-2*x^2). a(n) = 2*a(n-1)+2*a(n-2).

Extensions

Edited and extended by R. J. Mathar, Jan 23 2010