cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172030 Numerators of the sequence with g.f. x*B(x)/(1-2*x), where B(x) denotes the "original" Bernoulli numbers.

Original entry on oeis.org

0, 1, 5, 31, 31, 619, 619, 5779, 5779, 69341, 69341, 3051179, 3051179, 52884569, 52884569, 634649863, 634649863, 43152570067, 43152570067, 1093376176159, 1093376176159, 2623076354557, 2623076354557, 241599308325943, 241599308325943, 1604223576455477
Offset: 0

Views

Author

Paul Curtz, Jan 23 2010

Keywords

Comments

The generating function of the "original" Bernoulli numbers is
B(x) = sum_n A164555(n)*x^n/A027642(n). The generating function C(x) = x*B(x)/(1-2*x) defines a sequence
c(n) = 0, 1, 5/2, 31/6, 31/3, 619/30,... obeying c(n+1)-2*c(n) = A164555(n)/A027642(n).
a(n) is the numerator of c(n).

Crossrefs

Cf. A172031.

Programs

  • Mathematica
    c[n_] := 2*c[n-1] + BernoulliB[n-1]; c[0] = 0; c[1] = 1; c[2] = 5/2; a[n_] := c[n] // Numerator; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 15 2013 *)

Extensions

Edited and extended by R. J. Mathar, Mar 14 2010