A172101 Triangle, read by rows, given by [0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...] DELTA [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, ...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 2, 1, 0, 1, 3, 6, 6, 3, 1, 0, 1, 3, 9, 9, 9, 3, 1, 0, 1, 4, 12, 18, 18, 12, 4, 1, 0, 1, 4, 16, 24, 36, 24, 16, 4, 1, 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1
Offset: 0
Examples
Triangle begins : 1; 0, 1; 0, 1, 1; 0, 1, 1, 1; 0, 1, 2, 2, 1; 0, 1, 2, 4, 2, 1; 0, 1, 3, 6, 6, 3, 1; 0, 1, 3, 9, 9, 9, 3, 1; 0, 1, 4, 12, 18, 18, 12, 4, 1; 0, 1, 4, 16, 24, 36, 24, 16, 4, 1; 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1; 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1; 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[n eq 0 select 1 else (&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 08 2022
-
Mathematica
T[n_, k_]:= Product[Binomial[Floor[(n-j)/2], Floor[(k-j)/2]], {j,0,1}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2022 *)
-
Sage
def A172101(n,k): if (n==0): return 1 else: return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1)) flatten([[A172101(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 08 2022
Formula
Sum_{k=0..n} T(n,k) = A001405(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - [n=1] + A088518(n)*[n >= 1].
From G. C. Greubel, Apr 08 2022: (Start)
T(n, k) = binomial(floor((n-1)/2), floor((k-1)/2))*binomial(floor(n/2), floor(k/2)).
T(2*n, n) = [n=0] + A005566(n-1)*[n >= 1].
T(n-1, n-k) = T(n-1, k), n >= 1, 1 <= k <= n. (End)
Comments