cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172107 Triangle T_3(n, m), the number of surjective multi-valued functions from {1, 1, 1, 2, 3, ..., n-2} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 1, 6, 9, 4, 1, 14, 45, 52, 20, 1, 30, 177, 388, 360, 120, 1, 62, 621, 2260, 3740, 2880, 840, 1, 126, 2049, 11524, 30000, 39720, 26040, 6720, 1, 254, 6525, 54292, 207620, 418320, 460320, 262080, 60480, 1, 510, 20337, 243268, 1309560, 3755640, 6150480, 5779200, 2903040, 604800
Offset: 1

Views

Author

Martin Griffiths, Jan 25 2010

Keywords

Comments

T_3(1, m) = T_3(2, m) = 0 by definition. T_3(n, m) also gives the number of ordered partitions of {1, 1, 1, 2, 3, ..., n-2} into exactly m parts.

Examples

			Triangle begins as:
  0;
  0,   0;
  1,   2,     1;
  1,   6,     9,      4;
  1,  14,    45,     52,      20;
  1,  30,   177,    388,     360,     120;
  1,  62,   621,   2260,    3740,    2880,     840;
  1, 126,  2049,  11524,   30000,   39720,   26040,    6720;
  1, 254,  6525,  54292,  207620,  418320,  460320,  262080,   60480;
  1, 510, 20337, 243268, 1309560, 3755640, 6150480, 5779200, 2903040, 604800;
		

Crossrefs

This is related to A019538, A172106 and A172108.
Row sums give A172110.

Programs

  • Magma
    T:= func< n,k,m | n lt 3 select 0 else (&+[(-1)^(k+j)*Binomial(k,j)*Binomial(j+m-1,m)*j^(n-m): j in [1..k]]) >;
    [T(n,k,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 14 2022
    
  • Mathematica
    f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l,m}]; For[n = 3, n <= 10, n++, Print[Table[f[3, n, m], {m, 1, n}]]]
  • SageMath
    def T(n,k,m):
        if (n<3): return 0
        else: return sum( (-1)^(k-j)*binomial(k,j)*binomial(j+m-1,m)*j^(n-m) for j in (1..k) )
    flatten([[T(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 14 2022

Formula

T_3(n, m) = Sum_{j=0..m} binomial(m, j)*binomial(j+2, 3)*(-1)^(m-j)*j^(n-3), for n >= 3, with T(1, 1) = T(2, 1) = T(2, 2) = 0.
Sum_{k=1..n} T_3(n, k) = A172110(n).
Sum_{k=1..n} (-1)^k*T_3(n, k) = 0. - G. C. Greubel, Apr 14 2022

A172111 a(n) is the number of ordered partitions of {1, 1, 1, 1, 2, 3, ..., n-3}.

Original entry on oeis.org

0, 0, 0, 8, 48, 368, 3408, 36848, 454608, 6294128, 96556368, 1624775408, 29744591568, 588384837488, 12503968334928, 284065406275568, 6869235761650128, 176150548586638448, 4774198652678411088
Offset: 1

Views

Author

Martin Griffiths, Jan 25 2010

Keywords

Comments

a(n) is T_4(n) in the Griffiths and Mezo reference. - G. C. Greubel, Apr 15 2022

Crossrefs

This gives the row sums of A172108.

Programs

  • Magma
    [0,0,0] cat [(&+[ (&+[Binomial(k,j)*Binomial(j+3,4)*(-1)^(k-j)*j^(n-4): j in [0..k]]): k in [1..n]]): n in [4..25]]; // G. C. Greubel, Apr 15 2022
    
  • Mathematica
    f[r_, n_]:= If[n<4, 0, Sum[Sum[Binomial[m,l]Binomial[l+r-1,r](-1)^(m-l)l^(n-r), {l,m}], {m, n}]]; Table[f[4, n], {n,25}]
  • Sage
    [0,0,0]+[sum(sum(binomial(k,j)*binomial(j+3,4)*(-1)^(k+j)*j^(n-4) for j in (0..k)) for k in (1..n)) for n in (4..25)] # G. C. Greubel, Apr 15 2022

Formula

a(n) = Sum_{m=1..n} Sum_{j=0..m} binomial(m,j)*binomial(j+3,4)*(-1)^(m-j)*j^(n-4), for n>=4, with a(n) = 0 for n < 4.
a(n) ~ n! / (48 * log(2)^(n+1)). - Vaclav Kotesovec, Apr 15 2022
Showing 1-2 of 2 results.