A172113 Partial sums of the generalized Cuban primes A007645.
3, 10, 23, 42, 73, 110, 153, 214, 281, 354, 433, 530, 633, 742, 869, 1008, 1159, 1316, 1479, 1660, 1853, 2052, 2263, 2486, 2715, 2956, 3227, 3504, 3787, 4094, 4407, 4738, 5075, 5424, 5791, 6164, 6543, 6940, 7349, 7770, 8203, 8642, 9099, 9562, 10049
Offset: 1
Examples
a(30) = 3 + 7 + 13 + 19 + 31 + 37 + 43 + 61 + 67 + 73 + 79 + 97 + 103 + 109 + 127 + 139 + 151 + 157 + 163 + 181 + 193 + 199 + 211 + 223 + 229 + 241 + 271 + 277 + 283 + 307 = 4094.
Programs
-
Maple
Contribution from R. J. Mathar, Apr 24 2010: (Start) A007645 := proc(n) if n <= 2 then op(n,[3,7]) ; ; else for a from procname(n-1)+2 by 2 do if isprime(a) and (a mod 3) <> 2 then return a ; end if; end do: end if; end proc: A172113 := proc(n) add( A007645(i),i=1..n) ; end proc: seq(A172113(n),n=1..80) ; (End)
Formula
a(n) = SUM[i=1..n] A007645(i) = SUM[i=1..n] {primes of the form x^2 + xy + y^2} = SUM[i=1..n] {primes of form x^2 + 3*y^2} = SUM[i=1..n] {primes == 0 or 1 mod 3}.
Extensions
a(5) corrected and more terms appended by R. J. Mathar, Feb 07 2010
Edited by N. J. A. Sloane, Sep 26 2010, Jan 29 2013.
Comments