cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172113 Partial sums of the generalized Cuban primes A007645.

Original entry on oeis.org

3, 10, 23, 42, 73, 110, 153, 214, 281, 354, 433, 530, 633, 742, 869, 1008, 1159, 1316, 1479, 1660, 1853, 2052, 2263, 2486, 2715, 2956, 3227, 3504, 3787, 4094, 4407, 4738, 5075, 5424, 5791, 6164, 6543, 6940, 7349, 7770, 8203, 8642, 9099, 9562, 10049
Offset: 1

Views

Author

Jonathan Vos Post, Jan 25 2010

Keywords

Comments

Partial sums of primes of the form 3*m+1/2+-1/2. - Juri-Stepan Gerasimov, Jan 29 2010. E.g. a(1)=3*1+1/2-1/2=3, a(2)=3+3*2+1/2+1/2=10.
The primes in this sequence begin: a(1) = 3, a(3) = 23, a(5) = 73, a(9) = 281, a(11) = 433. Of these, the subset of generalized cuban primes which are partial sums of generalized cuban primes begins: 3, 73, 433.

Examples

			a(30) = 3 + 7 + 13 + 19 + 31 + 37 + 43 + 61 + 67 + 73 + 79 + 97 + 103 + 109 + 127 + 139 + 151 + 157 + 163 + 181 + 193 + 199 + 211 + 223 + 229 + 241 + 271 + 277 + 283 + 307 = 4094.
		

Crossrefs

Programs

  • Maple
    Contribution from R. J. Mathar, Apr 24 2010: (Start)
    A007645 := proc(n) if n <= 2 then op(n,[3,7]) ; ; else for a from procname(n-1)+2 by 2 do if isprime(a) and (a mod 3) <> 2 then return a ; end if; end do: end if; end proc:
    A172113 := proc(n) add( A007645(i),i=1..n) ; end proc: seq(A172113(n),n=1..80) ; (End)

Formula

a(n) = SUM[i=1..n] A007645(i) = SUM[i=1..n] {primes of the form x^2 + xy + y^2} = SUM[i=1..n] {primes of form x^2 + 3*y^2} = SUM[i=1..n] {primes == 0 or 1 mod 3}.

Extensions

a(5) corrected and more terms appended by R. J. Mathar, Feb 07 2010
Edited by N. J. A. Sloane, Sep 26 2010, Jan 29 2013.