A172161 Greedy Coppersmith-Winograd sequence.
0, 1, 2, 3, 4, 6, 9, 13, 20, 30, 45, 67, 101, 151, 227, 340, 510, 765, 1148, 1722, 2583, 3874, 5811, 8717, 13075, 19613, 29419, 44129, 66193, 99290, 148935, 223402, 335103, 502655, 753982, 1130973, 1696460, 2544690, 3817035, 5725552
Offset: 1
Examples
For a(6), if 5 were chosen, the sets {1, 4}, {2,3}, and {5} would all have the same sum. Clearly a(6) = 6 works because 0+1+2+3+4 = 10 < 2*6.
Links
- Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation, 9 (1990) 251-280.
- Jon Maiga, Computer-generated formulas for A172161, Sequence Machine.
Crossrefs
Cf. A120134.
Programs
-
PARI
first(n)=if(n<6, return([0..n-1])); my(v=vector(n),s=3); v[2]=1; v[3]=2; v[4]=3; for(i=5,n, v[i]=(s+=v[i-1])\2+1); v \\ Charles R Greathouse IV, Dec 02 2022
Formula
Conjecture: a(n) ~ k*(3 / 2)^n for some k. - Bill McEachen, Dec 02 2022
a(n) = floor((Sum_{i 4. - Charles R Greathouse IV, Dec 02 2022
Extensions
Two more terms from Warren D. Smith, Jan 29 2010
Extended by Charles R Greathouse IV, Dec 02 2022
Comments