cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172206 Number of ways to place 7 nonattacking kings on a 7 X n board.

Original entry on oeis.org

0, 0, 24, 926, 37282, 394202, 2484382, 10999618, 38168864, 110899878, 281638602, 643766432, 1352358921, 2651129458, 4906381466, 8648792662, 14623854922, 23851793294, 37697787702, 57953320884, 86929476107, 127563008202, 183536011462, 259410007946, 360775279732
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2 (3387 x^10 - 13990 x^9 + 57102 x^8 - 55038 x^7 + 217860 x^6 + 137902 x^5 + 324486 x^4 + 120530 x^3 + 30546 x^2 + 734 x + 24) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (117649n^7 -2873997n^6 +32197753n^5 -215350695n^4 +932130286n^3 -2618213868n^2 +4424623272n -3468569760)/720, n>=6. For any fixed value of k > 1, a(n) = 1/k!*(kn)^k - 3(k-1)(3k-2)/2/k!*(kn)^(k-1) + ... .
G.f.: x^3*(3387*x^10 -13990*x^9 +57102*x^8 -55038*x^7 +217860*x^6 +137902*x^5 +324486*x^4 +120530*x^3 +30546*x^2 +734*x +24)/(x-1)^8. - Vaclav Kotesovec, Mar 24 2010

A172261 Number of ways to place 8 nonattacking kings on an 8 X n board.

Original entry on oeis.org

0, 0, 25, 1847, 162531, 2501726, 21243084, 119138166, 502726650, 1724809105, 5059647669, 13132889249, 30905051345, 67124176002, 136380034610, 261909043488, 479315827404, 841394145399, 1424246670499, 2334919892115
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 30 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (11814 x^12 - 80082 x^11 + 366204 x^10 - 759794 x^9 + 1916625 x^8 - 283007 x^7 + 5337480 x^6 + 4589514 x^5 + 4426668 x^4 + 1103339 x^3 + 146808 x^2 + 1622 x + 25) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)

Formula

a(n) = (1048576n^8 -30277632n^7 +406210560n^6 -3319585920n^5 +18136811049n^4 -68048382318n^3 +171628664735n^2 -266425935930n +194935658400)/2520, n>=7.
G.f.: -x^3*(11814*x^12 -80082*x^11 +366204*x^10 -759794*x^9 +1916625*x^8 -283007*x^7 +5337480*x^6 +4589514*x^5 +4426668*x^4 +1103339*x^3 +146808*x^2 +1622*x +25)/(x-1)^9. [Vaclav Kotesovec, Mar 24 2010]
Showing 1-2 of 2 results.