cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172217 Number of ways to place 7 nonattacking knights on a 7 X n board.

Original entry on oeis.org

1, 78, 1758, 38588, 383246, 2135344, 8891854, 30108310, 86669806, 219845764, 504261973, 1065642840, 2104251027, 3924818982, 6973786593, 11884673662, 19532410762, 31097451768, 48140491605, 72688612756, 107333684073
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(252 x^18 - 272 x^17 - 5134 x^16 + 14468 x^15 + 19721 x^14 - 132666 x^13 + 174233 x^12 + 119440 x^11 - 540473 x^10 + 654954 x^9 - 89133 x^8 - 93778 x^7 + 497782 x^6 + 56796 x^5 + 119468 x^4 + 26652 x^3 + 1162 x^2 + 70 x + 1) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (117649n^7-2571471n^6+29223943n^5-216954465n^4+1114503256n^3-3907492824n^2+8562799512n-8962924320)/720,n>=12.
For any fixed value of k > 1, a(n) = 1/k!*(kn)^k - 3(k-1)(3k-4)/2/k!*(kn)^(k-1) + ...
G.f.: x * (252*x^18 -272*x^17 -5134*x^16 +14468*x^15 +19721*x^14 -132666*x^13 +174233*x^12 +119440*x^11 -540473*x^10 +654954*x^9 -89133*x^8 -93778*x^7 +497782*x^6 +56796*x^5 +119468*x^4 +26652*x^3 +1162*x^2 +70*x +1) / (x-1)^8. - Vaclav Kotesovec, Mar 25 2010

A174698 Number of ways to place 8 nonattacking knights on an 8 X n board.

Original entry on oeis.org

1, 81, 4409, 175720, 2479881, 17925691, 92952858, 379978716, 1286959255, 3765248749, 9805497200, 23226916560, 50866495373, 104288896551, 202154535834, 373400685738, 661407061211, 1129334088897, 1866838857216
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(592 x^21 - 584 x^20 - 18100 x^19 + 49628 x^18 + 134264 x^17 - 735838 x^16 + 584418 x^15 + 2607764 x^14 - 7093608 x^13 + 5656936 x^12 + 5136811 x^11 - 13973779 x^10 + 14583702 x^9 - 1612610 x^8 + 2009820 x^7 + 6682287 x^6 + 1572406 x^5 + 1050447 x^4 + 138871 x^3 + 3716 x^2 + 72 x + 1) / (1 - x)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

Explicit formula: a(n) = (262144*n^8 -6881280*n^7+93456384*n^6 -838693632*n^5 +5361604836*n^4 -24739168020*n^3+79766188151*n^2 -163079018193*n +160750559340)/630, n>=14.
G.f.: x*(592*x^21 -584*x^20 -18100*x^19 +49628*x^18+134264*x^17 -735838*x^16 +584418*x^15+2607764*x^14 -7093608*x^13 +5656936*x^12 +5136811*x^11 -13973779*x^10 +14583702*x^9 -1612610*x^8 +2009820*x^7 +6682287*x^6 +1572406*x^5 +1050447*x^4 +138871*x^3+3716*x^2 +72*x+1)/(1-x)^9.
Showing 1-2 of 2 results.