cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A172035 Smallest exponent k > 1 that sum of digits of k-th power of the n-th prime is a prime (n=1,2,...) or 0 if no such k exists.

Original entry on oeis.org

5, 0, 2, 2, 9, 3, 2, 5, 3, 2, 7, 2, 4, 5, 2, 2, 5, 2, 3, 6, 2, 2, 2, 2, 4, 8, 4, 2, 2, 4, 2, 8, 2, 3, 2, 2, 4, 4, 6, 2, 4, 2, 10, 3, 4, 2, 3, 2, 4, 3, 5, 6, 3, 4, 4, 2, 2, 2, 2, 2, 3, 4, 3, 3, 3, 5, 3, 3, 8, 2, 3, 12, 2, 3, 2, 5, 2, 3, 8, 16, 8, 3, 4, 2, 3, 2, 4, 2, 2, 5, 7, 4, 3, 8, 3, 2, 6, 2, 3, 6, 2, 2, 10
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jan 23 2010

Keywords

Comments

k = 1 is the "trivial" case: sod(prime(n)) = prime(m)
n = 2, prime(2) = 3: 3^k is for k > 1 a multiple of 3^2.

Examples

			sod(2^5)=5, sod(5^2)=7, sod(7^2)=13, sod(11^9)=53, sod(13^3)=19, sod(17^2)=19, sod(19^5)=37, sod(23^3)=17, sod(29^2)=13, sod(31^7)=31, sod(37^2)=19, sod(41^4)=31, sod(43^5)=31, sod(47^2)=13, sod(53^2)=19, sod(59^5)=47, sod(61^2)=13, sod(67^3)=19, sod(71^6)=37, sod(73^2)=19, sod(79^2)=13, sod(83^2)=31, sod(89^2)=19, sod(97^4)=43, sod(101^8)=67, sod(103^4)=31, sod(107^2)=19, sod(109^2)=19, sod(113^4)=31, sod(127^2)=19, sod(131^8)=61, sod(137^2)=31, sod(139^3)=37, sod(149^2)=7, sod(151^2)=13, sod(157^4)=31, sod(163^4)=37, sod(167^6)=73, sod(173^2)=31, sod(179^4)=37, sod(181^2)=19, sod(191^10)=97, sod(193^3)=37, sod(197^4)=37, sod(199^2)=19, sod(211^3)=37, sod(223^2)=31, sod(227^4)=43, sod(229^3)=37.
		

References

  • M. Fujiwara, Y. Ogawa: Introduction to truly beautiful Mathematics, Chikuma Shobo, Tokyo 2005.
  • Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005.
  • Hans Schubart: Einfuehrung in die klassische und moderne Zahlentheorie, Vieweg, Braunschweig 1974.

Crossrefs

Cf. A172216. - Klaus Brockhaus, Jan 29 2010

Programs

  • Magma
    S:=[ 5, 0 ]; for n in [3..103] do j:=2; while not IsPrime(&+Intseq(NthPrime(n)^j)) do j+:=1; end while; Append(~S, j); end for; S; // Klaus Brockhaus, Jan 29 2010

Extensions

More terms from Klaus Brockhaus, Jan 29 2010
Edited by Charles R Greathouse IV, Aug 02 2010
Showing 1-1 of 1 results.